gc.c 31.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <assert.h>
#include <stdio.h>
#include <string.h>

#include "py/mpstate.h"
#include "py/gc.h"
#include "py/obj.h"
#include "py/runtime.h"

#if MICROPY_ENABLE_GC

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif

// make this 1 to dump the heap each time it changes
#define EXTENSIVE_HEAP_PROFILING (0)

#define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / BYTES_PER_WORD)
#define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK)

// ATB = allocation table byte
// 0b00 = FREE -- free block
// 0b01 = HEAD -- head of a chain of blocks
// 0b10 = TAIL -- in the tail of a chain of blocks
// 0b11 = MARK -- marked head block

#define AT_FREE (0)
#define AT_HEAD (1)
#define AT_TAIL (2)
#define AT_MARK (3)

#define BLOCKS_PER_ATB (4)
#define ATB_MASK_0 (0x03)
#define ATB_MASK_1 (0x0c)
#define ATB_MASK_2 (0x30)
#define ATB_MASK_3 (0xc0)

#define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0)
#define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0)
#define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0)
#define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0)

#define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
#define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
#define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
#define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
#define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
#define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
#define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)

#define BLOCK_FROM_PTR(ptr) (((byte*)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK)
#define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start)))
#define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)

#if MICROPY_ENABLE_FINALISER
// FTB = finaliser table byte
// if set, then the corresponding block may have a finaliser

#define BLOCKS_PER_FTB (8)

#define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
#define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
#define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
#endif

#if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
#define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1)
#define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex))
#else
#define GC_ENTER()
#define GC_EXIT()
#endif

// TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
void gc_init(void *start, void *end) {
    // align end pointer on block boundary
    end = (void*)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1)));
    DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start);

    // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
    // T = A + F + P
    //     F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
    //     P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
    // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
    size_t total_byte_len = (byte*)end - (byte*)start;
#if MICROPY_ENABLE_FINALISER
    MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
#else
    MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
#endif

    MP_STATE_MEM(gc_alloc_table_start) = (byte*)start;

#if MICROPY_ENABLE_FINALISER
    size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
    MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len);
#endif

    size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
    MP_STATE_MEM(gc_pool_start) = (byte*)end - gc_pool_block_len * BYTES_PER_BLOCK;
    MP_STATE_MEM(gc_pool_end) = end;

#if MICROPY_ENABLE_FINALISER
    assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len);
#endif

    // clear ATBs
    memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len));

#if MICROPY_ENABLE_FINALISER
    // clear FTBs
    memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len);
#endif

    // set last free ATB index to start of heap
    MP_STATE_MEM(gc_last_free_atb_index) = 0;

    // unlock the GC
    MP_STATE_MEM(gc_lock_depth) = 0;

    // allow auto collection
    MP_STATE_MEM(gc_auto_collect_enabled) = 1;

    #if MICROPY_GC_ALLOC_THRESHOLD
    // by default, maxuint for gc threshold, effectively turning gc-by-threshold off
    MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
    MP_STATE_MEM(gc_alloc_amount) = 0;
    #endif

    #if MICROPY_PY_THREAD
    mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
    #endif

    DEBUG_printf("GC layout:\n");
    DEBUG_printf("  alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
#if MICROPY_ENABLE_FINALISER
    DEBUG_printf("  finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
#endif
    DEBUG_printf("  pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
}

void gc_lock(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)++;
    GC_EXIT();
}

void gc_unlock(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)--;
    GC_EXIT();
}

bool gc_is_locked(void) {
    return MP_STATE_MEM(gc_lock_depth) != 0;
}

// ptr should be of type void*
#define VERIFY_PTR(ptr) ( \
        ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0      /* must be aligned on a block */ \
        && ptr >= (void*)MP_STATE_MEM(gc_pool_start)     /* must be above start of pool */ \
        && ptr < (void*)MP_STATE_MEM(gc_pool_end)        /* must be below end of pool */ \
    )

// ptr should be of type void*
#define VERIFY_MARK_AND_PUSH(ptr) \
    do { \
        if (VERIFY_PTR(ptr)) { \
            size_t _block = BLOCK_FROM_PTR(ptr); \
            if (ATB_GET_KIND(_block) == AT_HEAD) { \
                /* an unmarked head, mark it, and push it on gc stack */ \
                DEBUG_printf("gc_mark(%p)\n", ptr); \
                ATB_HEAD_TO_MARK(_block); \
                if (MP_STATE_MEM(gc_sp) < &MP_STATE_MEM(gc_stack)[MICROPY_ALLOC_GC_STACK_SIZE]) { \
                    *MP_STATE_MEM(gc_sp)++ = _block; \
                } else { \
                    MP_STATE_MEM(gc_stack_overflow) = 1; \
                } \
            } \
        } \
    } while (0)

STATIC void gc_drain_stack(void) {
    while (MP_STATE_MEM(gc_sp) > MP_STATE_MEM(gc_stack)) {
        // pop the next block off the stack
        size_t block = *--MP_STATE_MEM(gc_sp);

        // work out number of consecutive blocks in the chain starting with this one
        size_t n_blocks = 0;
        do {
            n_blocks += 1;
        } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);

        // check this block's children
        void **ptrs = (void**)PTR_FROM_BLOCK(block);
        for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void*); i > 0; i--, ptrs++) {
            void *ptr = *ptrs;
            VERIFY_MARK_AND_PUSH(ptr);
        }
    }
}

STATIC void gc_deal_with_stack_overflow(void) {
    while (MP_STATE_MEM(gc_stack_overflow)) {
        MP_STATE_MEM(gc_stack_overflow) = 0;
        MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack);

        // scan entire memory looking for blocks which have been marked but not their children
        for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
            // trace (again) if mark bit set
            if (ATB_GET_KIND(block) == AT_MARK) {
                *MP_STATE_MEM(gc_sp)++ = block;
                gc_drain_stack();
            }
        }
    }
}

STATIC void gc_sweep(void) {
    #if MICROPY_PY_GC_COLLECT_RETVAL
    MP_STATE_MEM(gc_collected) = 0;
    #endif
    // free unmarked heads and their tails
    int free_tail = 0;
    for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
        switch (ATB_GET_KIND(block)) {
            case AT_HEAD:
#if MICROPY_ENABLE_FINALISER
                if (FTB_GET(block)) {
                    mp_obj_base_t *obj = (mp_obj_base_t*)PTR_FROM_BLOCK(block);
                    if (obj->type != NULL) {
                        // if the object has a type then see if it has a __del__ method
                        mp_obj_t dest[2];
                        mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest);
                        if (dest[0] != MP_OBJ_NULL) {
                            // load_method returned a method, execute it in a protected environment
                            #if MICROPY_ENABLE_SCHEDULER
                            mp_sched_lock();
                            #endif
                            mp_call_function_1_protected(dest[0], dest[1]);
                            #if MICROPY_ENABLE_SCHEDULER
                            mp_sched_unlock();
                            #endif
                        }
                    }
                    // clear finaliser flag
                    FTB_CLEAR(block);
                }
#endif
                free_tail = 1;
                DEBUG_printf("gc_sweep(%x)\n", PTR_FROM_BLOCK(block));
                #if MICROPY_PY_GC_COLLECT_RETVAL
                MP_STATE_MEM(gc_collected)++;
                #endif
                // fall through to free the head

            case AT_TAIL:
                if (free_tail) {
                    ATB_ANY_TO_FREE(block);
                }
                break;

            case AT_MARK:
                ATB_MARK_TO_HEAD(block);
                free_tail = 0;
                break;
        }
    }
}

void gc_collect_start(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)++;
    #if MICROPY_GC_ALLOC_THRESHOLD
    MP_STATE_MEM(gc_alloc_amount) = 0;
    #endif
    MP_STATE_MEM(gc_stack_overflow) = 0;
    MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack);
    // Trace root pointers.  This relies on the root pointers being organised
    // correctly in the mp_state_ctx structure.  We scan nlr_top, dict_locals,
    // dict_globals, then the root pointer section of mp_state_vm.
    void **ptrs = (void**)(void*)&mp_state_ctx;
    gc_collect_root(ptrs, offsetof(mp_state_ctx_t, vm.qstr_last_chunk) / sizeof(void*));
}

void gc_collect_root(void **ptrs, size_t len) {
    for (size_t i = 0; i < len; i++) {
        void *ptr = ptrs[i];
        VERIFY_MARK_AND_PUSH(ptr);
        gc_drain_stack();
    }
}

void gc_collect_end(void) {
    gc_deal_with_stack_overflow();
    gc_sweep();
    MP_STATE_MEM(gc_last_free_atb_index) = 0;
    MP_STATE_MEM(gc_lock_depth)--;
    GC_EXIT();
}

void gc_info(gc_info_t *info) {
    GC_ENTER();
    info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
    info->used = 0;
    info->free = 0;
    info->max_free = 0;
    info->num_1block = 0;
    info->num_2block = 0;
    info->max_block = 0;
    bool finish = false;
    for (size_t block = 0, len = 0, len_free = 0; !finish;) {
        size_t kind = ATB_GET_KIND(block);
        switch (kind) {
            case AT_FREE:
                info->free += 1;
                len_free += 1;
                len = 0;
                break;

            case AT_HEAD:
                info->used += 1;
                len = 1;
                break;

            case AT_TAIL:
                info->used += 1;
                len += 1;
                break;

            case AT_MARK:
                // shouldn't happen
                break;
        }

        block++;
        finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
        // Get next block type if possible
        if (!finish) {
            kind = ATB_GET_KIND(block);
        }

        if (finish || kind == AT_FREE || kind == AT_HEAD) {
            if (len == 1) {
                info->num_1block += 1;
            } else if (len == 2) {
                info->num_2block += 1;
            }
            if (len > info->max_block) {
                info->max_block = len;
            }
            if (finish || kind == AT_HEAD) {
                if (len_free > info->max_free) {
                    info->max_free = len_free;
                }
                len_free = 0;
            }
        }
    }

    info->used *= BYTES_PER_BLOCK;
    info->free *= BYTES_PER_BLOCK;
    GC_EXIT();
}

void *gc_alloc(size_t n_bytes, bool has_finaliser) {
    size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
    DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);

    // check for 0 allocation
    if (n_blocks == 0) {
        return NULL;
    }

    GC_ENTER();

    // check if GC is locked
    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        GC_EXIT();
        return NULL;
    }

    size_t i;
    size_t end_block;
    size_t start_block;
    size_t n_free = 0;
    int collected = !MP_STATE_MEM(gc_auto_collect_enabled);

    #if MICROPY_GC_ALLOC_THRESHOLD
    if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
        GC_EXIT();
        gc_collect();
        GC_ENTER();
    }
    #endif

    for (;;) {

        // look for a run of n_blocks available blocks
        for (i = MP_STATE_MEM(gc_last_free_atb_index); i < MP_STATE_MEM(gc_alloc_table_byte_len); i++) {
            byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
            if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; }
            if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; }
            if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; }
            if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; }
        }

        GC_EXIT();
        // nothing found!
        if (collected) {
            return NULL;
        }
        DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
        gc_collect();
        collected = 1;
        GC_ENTER();
    }

    // found, ending at block i inclusive
found:
    // get starting and end blocks, both inclusive
    end_block = i;
    start_block = i - n_free + 1;

    // Set last free ATB index to block after last block we found, for start of
    // next scan.  To reduce fragmentation, we only do this if we were looking
    // for a single free block, which guarantees that there are no free blocks
    // before this one.  Also, whenever we free or shink a block we must check
    // if this index needs adjusting (see gc_realloc and gc_free).
    if (n_free == 1) {
        MP_STATE_MEM(gc_last_free_atb_index) = (i + 1) / BLOCKS_PER_ATB;
    }

    // mark first block as used head
    ATB_FREE_TO_HEAD(start_block);

    // mark rest of blocks as used tail
    // TODO for a run of many blocks can make this more efficient
    for (size_t bl = start_block + 1; bl <= end_block; bl++) {
        ATB_FREE_TO_TAIL(bl);
    }

    // get pointer to first block
    // we must create this pointer before unlocking the GC so a collection can find it
    void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
    DEBUG_printf("gc_alloc(%p)\n", ret_ptr);

    #if MICROPY_GC_ALLOC_THRESHOLD
    MP_STATE_MEM(gc_alloc_amount) += n_blocks;
    #endif

    GC_EXIT();

    #if MICROPY_GC_CONSERVATIVE_CLEAR
    // be conservative and zero out all the newly allocated blocks
    memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
    #else
    // zero out the additional bytes of the newly allocated blocks
    // This is needed because the blocks may have previously held pointers
    // to the heap and will not be set to something else if the caller
    // doesn't actually use the entire block.  As such they will continue
    // to point to the heap and may prevent other blocks from being reclaimed.
    memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
    #endif

    #if MICROPY_ENABLE_FINALISER
    if (has_finaliser) {
        // clear type pointer in case it is never set
        ((mp_obj_base_t*)ret_ptr)->type = NULL;
        // set mp_obj flag only if it has a finaliser
        GC_ENTER();
        FTB_SET(start_block);
        GC_EXIT();
    }
    #else
    (void)has_finaliser;
    #endif

    #if EXTENSIVE_HEAP_PROFILING
    gc_dump_alloc_table();
    #endif

    return ret_ptr;
}

/*
void *gc_alloc(mp_uint_t n_bytes) {
    return _gc_alloc(n_bytes, false);
}

void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
    return _gc_alloc(n_bytes, true);
}
*/

// force the freeing of a piece of memory
// TODO: freeing here does not call finaliser
void gc_free(void *ptr) {
    GC_ENTER();
    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        // TODO how to deal with this error?
        GC_EXIT();
        return;
    }

    DEBUG_printf("gc_free(%p)\n", ptr);

    if (ptr == NULL) {
        GC_EXIT();
    } else {
        // get the GC block number corresponding to this pointer
        assert(VERIFY_PTR(ptr));
        size_t block = BLOCK_FROM_PTR(ptr);
        assert(ATB_GET_KIND(block) == AT_HEAD);

        #if MICROPY_ENABLE_FINALISER
        FTB_CLEAR(block);
        #endif

        // set the last_free pointer to this block if it's earlier in the heap
        if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) {
            MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB;
        }

        // free head and all of its tail blocks
        do {
            ATB_ANY_TO_FREE(block);
            block += 1;
        } while (ATB_GET_KIND(block) == AT_TAIL);

        GC_EXIT();

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif
    }
}

size_t gc_nbytes(const void *ptr) {
    GC_ENTER();
    if (VERIFY_PTR(ptr)) {
        size_t block = BLOCK_FROM_PTR(ptr);
        if (ATB_GET_KIND(block) == AT_HEAD) {
            // work out number of consecutive blocks in the chain starting with this on
            size_t n_blocks = 0;
            do {
                n_blocks += 1;
            } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
            GC_EXIT();
            return n_blocks * BYTES_PER_BLOCK;
        }
    }

    // invalid pointer
    GC_EXIT();
    return 0;
}

#if 0
// old, simple realloc that didn't expand memory in place
void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
    mp_uint_t n_existing = gc_nbytes(ptr);
    if (n_bytes <= n_existing) {
        return ptr;
    } else {
        bool has_finaliser;
        if (ptr == NULL) {
            has_finaliser = false;
        } else {
#if MICROPY_ENABLE_FINALISER
            has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
#else
            has_finaliser = false;
#endif
        }
        void *ptr2 = gc_alloc(n_bytes, has_finaliser);
        if (ptr2 == NULL) {
            return ptr2;
        }
        memcpy(ptr2, ptr, n_existing);
        gc_free(ptr);
        return ptr2;
    }
}

#else // Alternative gc_realloc impl

void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
    // check for pure allocation
    if (ptr_in == NULL) {
        return gc_alloc(n_bytes, false);
    }

    // check for pure free
    if (n_bytes == 0) {
        gc_free(ptr_in);
        return NULL;
    }

    void *ptr = ptr_in;

    // sanity check the ptr
    if (!VERIFY_PTR(ptr)) {
        return NULL;
    }

    // get first block
    size_t block = BLOCK_FROM_PTR(ptr);

    GC_ENTER();

    // sanity check the ptr is pointing to the head of a block
    if (ATB_GET_KIND(block) != AT_HEAD) {
        GC_EXIT();
        return NULL;
    }

    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        GC_EXIT();
        return NULL;
    }

    // compute number of new blocks that are requested
    size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;

    // Get the total number of consecutive blocks that are already allocated to
    // this chunk of memory, and then count the number of free blocks following
    // it.  Stop if we reach the end of the heap, or if we find enough extra
    // free blocks to satisfy the realloc.  Note that we need to compute the
    // total size of the existing memory chunk so we can correctly and
    // efficiently shrink it (see below for shrinking code).
    size_t n_free   = 0;
    size_t n_blocks = 1; // counting HEAD block
    size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
    for (size_t bl = block + n_blocks; bl < max_block; bl++) {
        byte block_type = ATB_GET_KIND(bl);
        if (block_type == AT_TAIL) {
            n_blocks++;
            continue;
        }
        if (block_type == AT_FREE) {
            n_free++;
            if (n_blocks + n_free >= new_blocks) {
                // stop as soon as we find enough blocks for n_bytes
                break;
            }
            continue;
        }
        break;
    }

    // return original ptr if it already has the requested number of blocks
    if (new_blocks == n_blocks) {
        GC_EXIT();
        return ptr_in;
    }

    // check if we can shrink the allocated area
    if (new_blocks < n_blocks) {
        // free unneeded tail blocks
        for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
            ATB_ANY_TO_FREE(bl);
        }

        // set the last_free pointer to end of this block if it's earlier in the heap
        if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) {
            MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB;
        }

        GC_EXIT();

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif

        return ptr_in;
    }

    // check if we can expand in place
    if (new_blocks <= n_blocks + n_free) {
        // mark few more blocks as used tail
        for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
            assert(ATB_GET_KIND(bl) == AT_FREE);
            ATB_FREE_TO_TAIL(bl);
        }

        GC_EXIT();

        #if MICROPY_GC_CONSERVATIVE_CLEAR
        // be conservative and zero out all the newly allocated blocks
        memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
        #else
        // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
        memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
        #endif

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif

        return ptr_in;
    }

    #if MICROPY_ENABLE_FINALISER
    bool ftb_state = FTB_GET(block);
    #else
    bool ftb_state = false;
    #endif

    GC_EXIT();

    if (!allow_move) {
        // not allowed to move memory block so return failure
        return NULL;
    }

    // can't resize inplace; try to find a new contiguous chain
    void *ptr_out = gc_alloc(n_bytes, ftb_state);

    // check that the alloc succeeded
    if (ptr_out == NULL) {
        return NULL;
    }

    DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
    memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
    gc_free(ptr_in);
    return ptr_out;
}
#endif // Alternative gc_realloc impl

void gc_dump_info(void) {
    gc_info_t info;
    gc_info(&info);
    mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n",
        (uint)info.total, (uint)info.used, (uint)info.free);
    mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n",
           (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free);
}

void gc_dump_alloc_table(void) {
    GC_ENTER();
    static const size_t DUMP_BYTES_PER_LINE = 64;
    #if !EXTENSIVE_HEAP_PROFILING
    // When comparing heap output we don't want to print the starting
    // pointer of the heap because it changes from run to run.
    mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
    #endif
    for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
        if (bl % DUMP_BYTES_PER_LINE == 0) {
            // a new line of blocks
            {
                // check if this line contains only free blocks
                size_t bl2 = bl;
                while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
                    bl2++;
                }
                if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
                    // there are at least 2 lines containing only free blocks, so abbreviate their printing
                    mp_printf(&mp_plat_print, "\n       (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
                    bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
                    if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
                        // got to end of heap
                        break;
                    }
                }
            }
            // print header for new line of blocks
            // (the cast to uint32_t is for 16-bit ports)
            //mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
            mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
        }
        int c = ' ';
        switch (ATB_GET_KIND(bl)) {
            case AT_FREE: c = '.'; break;
            /* this prints out if the object is reachable from BSS or STACK (for unix only)
            case AT_HEAD: {
                c = 'h';
                void **ptrs = (void**)(void*)&mp_state_ctx;
                mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
                for (mp_uint_t i = 0; i < len; i++) {
                    mp_uint_t ptr = (mp_uint_t)ptrs[i];
                    if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                        c = 'B';
                        break;
                    }
                }
                if (c == 'h') {
                    ptrs = (void**)&c;
                    len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
                    for (mp_uint_t i = 0; i < len; i++) {
                        mp_uint_t ptr = (mp_uint_t)ptrs[i];
                        if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                            c = 'S';
                            break;
                        }
                    }
                }
                break;
            }
            */
            /* this prints the uPy object type of the head block */
            case AT_HEAD: {
                void **ptr = (void**)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
                if (*ptr == &mp_type_tuple) { c = 'T'; }
                else if (*ptr == &mp_type_list) { c = 'L'; }
                else if (*ptr == &mp_type_dict) { c = 'D'; }
                else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { c = 'S'; }
                #if MICROPY_PY_BUILTINS_BYTEARRAY
                else if (*ptr == &mp_type_bytearray) { c = 'A'; }
                #endif
                #if MICROPY_PY_ARRAY
                else if (*ptr == &mp_type_array) { c = 'A'; }
                #endif
                #if MICROPY_PY_BUILTINS_FLOAT
                else if (*ptr == &mp_type_float) { c = 'F'; }
                #endif
                else if (*ptr == &mp_type_fun_bc) { c = 'B'; }
                else if (*ptr == &mp_type_module) { c = 'M'; }
                else {
                    c = 'h';
                    #if 0
                    // This code prints "Q" for qstr-pool data, and "q" for qstr-str
                    // data.  It can be useful to see how qstrs are being allocated,
                    // but is disabled by default because it is very slow.
                    for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
                        if ((qstr_pool_t*)ptr == pool) {
                            c = 'Q';
                            break;
                        }
                        for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
                            if ((const byte*)ptr == *q) {
                                c = 'q';
                                break;
                            }
                        }
                    }
                    #endif
                }
                break;
            }
            case AT_TAIL: c = '='; break;
            case AT_MARK: c = 'm'; break;
        }
        mp_printf(&mp_plat_print, "%c", c);
    }
    mp_print_str(&mp_plat_print, "\n");
    GC_EXIT();
}

#if DEBUG_PRINT
void gc_test(void) {
    mp_uint_t len = 500;
    mp_uint_t *heap = malloc(len);
    gc_init(heap, heap + len / sizeof(mp_uint_t));
    void *ptrs[100];
    {
        mp_uint_t **p = gc_alloc(16, false);
        p[0] = gc_alloc(64, false);
        p[1] = gc_alloc(1, false);
        p[2] = gc_alloc(1, false);
        p[3] = gc_alloc(1, false);
        mp_uint_t ***p2 = gc_alloc(16, false);
        p2[0] = p;
        p2[1] = p;
        ptrs[0] = p2;
    }
    for (int i = 0; i < 25; i+=2) {
        mp_uint_t *p = gc_alloc(i, false);
        printf("p=%p\n", p);
        if (i & 3) {
            //ptrs[i] = p;
        }
    }

    printf("Before GC:\n");
    gc_dump_alloc_table();
    printf("Starting GC...\n");
    gc_collect_start();
    gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*));
    gc_collect_end();
    printf("After GC:\n");
    gc_dump_alloc_table();
}
#endif

#endif // MICROPY_ENABLE_GC