emitnative.c 94.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// Essentially normal Python has 1 type: Python objects
// Viper has more than 1 type, and is just a more complicated (a superset of) Python.
// If you declare everything in Viper as a Python object (ie omit type decls) then
// it should in principle be exactly the same as Python native.
// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
// In practice we won't have a VM but rather do this in asm which is actually very minimal.

// Because it breaks strict Python equivalence it should be a completely separate
// decorator.  It breaks equivalence because overflow on integers wraps around.
// It shouldn't break equivalence if you don't use the new types, but since the
// type decls might be used in normal Python for other reasons, it's probably safest,
// cleanest and clearest to make it a separate decorator.

// Actually, it does break equivalence because integers default to native integers,
// not Python objects.

// for x in l[0:8]: can be compiled into a native loop if l has pointer type

#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/nlr.h"
#include "py/emit.h"
#include "py/bc.h"

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif

// wrapper around everything in this file
#if (MICROPY_EMIT_X64 && N_X64) \
    || (MICROPY_EMIT_X86 && N_X86) \
    || (MICROPY_EMIT_THUMB && N_THUMB) \
    || (MICROPY_EMIT_ARM && N_ARM) \
    || (MICROPY_EMIT_XTENSA && N_XTENSA) \

// this is defined so that the assembler exports generic assembler API macros
#define GENERIC_ASM_API (1)

#if N_X64

// x64 specific stuff
#include "py/asmx64.h"
#define EXPORT_FUN(name) emit_native_x64_##name

#elif N_X86

// x86 specific stuff

STATIC byte mp_f_n_args[MP_F_NUMBER_OF] = {
    [MP_F_CONVERT_OBJ_TO_NATIVE] = 2,
    [MP_F_CONVERT_NATIVE_TO_OBJ] = 2,
    [MP_F_LOAD_NAME] = 1,
    [MP_F_LOAD_GLOBAL] = 1,
    [MP_F_LOAD_BUILD_CLASS] = 0,
    [MP_F_LOAD_ATTR] = 2,
    [MP_F_LOAD_METHOD] = 3,
    [MP_F_LOAD_SUPER_METHOD] = 2,
    [MP_F_STORE_NAME] = 2,
    [MP_F_STORE_GLOBAL] = 2,
    [MP_F_STORE_ATTR] = 3,
    [MP_F_OBJ_SUBSCR] = 3,
    [MP_F_OBJ_IS_TRUE] = 1,
    [MP_F_UNARY_OP] = 2,
    [MP_F_BINARY_OP] = 3,
    [MP_F_BUILD_TUPLE] = 2,
    [MP_F_BUILD_LIST] = 2,
    [MP_F_LIST_APPEND] = 2,
    [MP_F_BUILD_MAP] = 1,
    [MP_F_STORE_MAP] = 3,
#if MICROPY_PY_BUILTINS_SET
    [MP_F_BUILD_SET] = 2,
    [MP_F_STORE_SET] = 2,
#endif
    [MP_F_MAKE_FUNCTION_FROM_RAW_CODE] = 3,
    [MP_F_NATIVE_CALL_FUNCTION_N_KW] = 3,
    [MP_F_CALL_METHOD_N_KW] = 3,
    [MP_F_CALL_METHOD_N_KW_VAR] = 3,
    [MP_F_NATIVE_GETITER] = 2,
    [MP_F_NATIVE_ITERNEXT] = 1,
    [MP_F_NLR_PUSH] = 1,
    [MP_F_NLR_POP] = 0,
    [MP_F_NATIVE_RAISE] = 1,
    [MP_F_IMPORT_NAME] = 3,
    [MP_F_IMPORT_FROM] = 2,
    [MP_F_IMPORT_ALL] = 1,
#if MICROPY_PY_BUILTINS_SLICE
    [MP_F_NEW_SLICE] = 3,
#endif
    [MP_F_UNPACK_SEQUENCE] = 3,
    [MP_F_UNPACK_EX] = 3,
    [MP_F_DELETE_NAME] = 1,
    [MP_F_DELETE_GLOBAL] = 1,
    [MP_F_NEW_CELL] = 1,
    [MP_F_MAKE_CLOSURE_FROM_RAW_CODE] = 3,
    [MP_F_SETUP_CODE_STATE] = 5,
};

#include "py/asmx86.h"
#define EXPORT_FUN(name) emit_native_x86_##name

#elif N_THUMB

// thumb specific stuff
#include "py/asmthumb.h"
#define EXPORT_FUN(name) emit_native_thumb_##name

#elif N_ARM

// ARM specific stuff
#include "py/asmarm.h"
#define EXPORT_FUN(name) emit_native_arm_##name

#elif N_XTENSA

// Xtensa specific stuff
#include "py/asmxtensa.h"
#define EXPORT_FUN(name) emit_native_xtensa_##name

#else

#error unknown native emitter

#endif

#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \
        *emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \
    } while (0)

typedef enum {
    STACK_VALUE,
    STACK_REG,
    STACK_IMM,
} stack_info_kind_t;

// these enums must be distinct and the bottom 4 bits
// must correspond to the correct MP_NATIVE_TYPE_xxx value
typedef enum {
    VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ,
    VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL,
    VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT,
    VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT,
    VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR,
    VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8,
    VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16,
    VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32,

    VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR,

    VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ,
    VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ,
} vtype_kind_t;

STATIC qstr vtype_to_qstr(vtype_kind_t vtype) {
    switch (vtype) {
        case VTYPE_PYOBJ: return MP_QSTR_object;
        case VTYPE_BOOL: return MP_QSTR_bool;
        case VTYPE_INT: return MP_QSTR_int;
        case VTYPE_UINT: return MP_QSTR_uint;
        case VTYPE_PTR: return MP_QSTR_ptr;
        case VTYPE_PTR8: return MP_QSTR_ptr8;
        case VTYPE_PTR16: return MP_QSTR_ptr16;
        case VTYPE_PTR32: return MP_QSTR_ptr32;
        case VTYPE_PTR_NONE: default: return MP_QSTR_None;
    }
}

typedef struct _stack_info_t {
    vtype_kind_t vtype;
    stack_info_kind_t kind;
    union {
        int u_reg;
        mp_int_t u_imm;
    } data;
} stack_info_t;

struct _emit_t {
    mp_obj_t *error_slot;
    int pass;

    bool do_viper_types;

    vtype_kind_t return_vtype;

    mp_uint_t local_vtype_alloc;
    vtype_kind_t *local_vtype;

    mp_uint_t stack_info_alloc;
    stack_info_t *stack_info;
    vtype_kind_t saved_stack_vtype;

    int prelude_offset;
    int const_table_offset;
    int n_state;
    int stack_start;
    int stack_size;

    bool last_emit_was_return_value;

    scope_t *scope;

    ASM_T *as;
};

emit_t *EXPORT_FUN(new)(mp_obj_t *error_slot, mp_uint_t max_num_labels) {
    emit_t *emit = m_new0(emit_t, 1);
    emit->error_slot = error_slot;
    emit->as = m_new0(ASM_T, 1);
    mp_asm_base_init(&emit->as->base, max_num_labels);
    return emit;
}

void EXPORT_FUN(free)(emit_t *emit) {
    mp_asm_base_deinit(&emit->as->base, false);
    m_del_obj(ASM_T, emit->as);
    m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
    m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
    m_del_obj(emit_t, emit);
}

STATIC void emit_native_set_native_type(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2) {
    switch (op) {
        case MP_EMIT_NATIVE_TYPE_ENABLE:
            emit->do_viper_types = arg1;
            break;

        default: {
            vtype_kind_t type;
            switch (arg2) {
                case MP_QSTR_object: type = VTYPE_PYOBJ; break;
                case MP_QSTR_bool: type = VTYPE_BOOL; break;
                case MP_QSTR_int: type = VTYPE_INT; break;
                case MP_QSTR_uint: type = VTYPE_UINT; break;
                case MP_QSTR_ptr: type = VTYPE_PTR; break;
                case MP_QSTR_ptr8: type = VTYPE_PTR8; break;
                case MP_QSTR_ptr16: type = VTYPE_PTR16; break;
                case MP_QSTR_ptr32: type = VTYPE_PTR32; break;
                default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "unknown type '%q'", arg2); return;
            }
            if (op == MP_EMIT_NATIVE_TYPE_RETURN) {
                emit->return_vtype = type;
            } else {
                assert(arg1 < emit->local_vtype_alloc);
                emit->local_vtype[arg1] = type;
            }
            break;
        }
    }
}

STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest);
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg);
STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num);
STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num);

#define STATE_START (sizeof(mp_code_state_t) / sizeof(mp_uint_t))

STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
    DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope);

    emit->pass = pass;
    emit->stack_start = 0;
    emit->stack_size = 0;
    emit->last_emit_was_return_value = false;
    emit->scope = scope;

    // allocate memory for keeping track of the types of locals
    if (emit->local_vtype_alloc < scope->num_locals) {
        emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
        emit->local_vtype_alloc = scope->num_locals;
    }

    // allocate memory for keeping track of the objects on the stack
    // XXX don't know stack size on entry, and it should be maximum over all scopes
    // XXX this is such a big hack and really needs to be fixed
    if (emit->stack_info == NULL) {
        emit->stack_info_alloc = scope->stack_size + 200;
        emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
    }

    // set default type for return
    emit->return_vtype = VTYPE_PYOBJ;

    // set default type for arguments
    mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args;
    if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
        num_args += 1;
    }
    if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) {
        num_args += 1;
    }
    for (mp_uint_t i = 0; i < num_args; i++) {
        emit->local_vtype[i] = VTYPE_PYOBJ;
    }

    // local variables begin unbound, and have unknown type
    for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) {
        emit->local_vtype[i] = VTYPE_UNBOUND;
    }

    // values on stack begin unbound
    for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) {
        emit->stack_info[i].kind = STACK_VALUE;
        emit->stack_info[i].vtype = VTYPE_UNBOUND;
    }

    mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE);

    // generate code for entry to function

    if (emit->do_viper_types) {

        // right now we have a restriction of maximum of 4 arguments
        if (scope->num_pos_args >= 5) {
            EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "Viper functions don't currently support more than 4 arguments");
            return;
        }

        // entry to function
        int num_locals = 0;
        if (pass > MP_PASS_SCOPE) {
            num_locals = scope->num_locals - REG_LOCAL_NUM;
            if (num_locals < 0) {
                num_locals = 0;
            }
            emit->stack_start = num_locals;
            num_locals += scope->stack_size;
        }
        ASM_ENTRY(emit->as, num_locals);

        // TODO don't load r7 if we don't need it
        #if N_THUMB
        asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table);
        #elif N_ARM
        asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table);
        #endif

        #if N_X86
        for (int i = 0; i < scope->num_pos_args; i++) {
            if (i == 0) {
                asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_1);
            } else if (i == 1) {
                asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_2);
            } else if (i == 2) {
                asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_3);
            } else {
                asm_x86_mov_arg_to_r32(emit->as, i, REG_TEMP0);
                asm_x86_mov_r32_to_local(emit->as, REG_TEMP0, i - REG_LOCAL_NUM);
            }
        }
        #else
        for (int i = 0; i < scope->num_pos_args; i++) {
            if (i == 0) {
                ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1);
            } else if (i == 1) {
                ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2);
            } else if (i == 2) {
                ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3);
            } else {
                assert(i == 3); // should be true; max 4 args is checked above
                ASM_MOV_REG_TO_LOCAL(emit->as, REG_ARG_4, i - REG_LOCAL_NUM);
            }
        }
        #endif

    } else {
        // work out size of state (locals plus stack)
        emit->n_state = scope->num_locals + scope->stack_size;

        // allocate space on C-stack for code_state structure, which includes state
        ASM_ENTRY(emit->as, STATE_START + emit->n_state);

        // TODO don't load r7 if we don't need it
        #if N_THUMB
        asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table);
        #elif N_ARM
        asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table);
        #endif

        // prepare incoming arguments for call to mp_setup_code_state

        #if N_X86
        asm_x86_mov_arg_to_r32(emit->as, 0, REG_ARG_1);
        asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_2);
        asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_3);
        asm_x86_mov_arg_to_r32(emit->as, 3, REG_ARG_4);
        #endif

        // set code_state.fun_bc
        ASM_MOV_REG_TO_LOCAL(emit->as, REG_ARG_1, offsetof(mp_code_state_t, fun_bc) / sizeof(uintptr_t));

        // set code_state.ip (offset from start of this function to prelude info)
        // XXX this encoding may change size
        ASM_MOV_IMM_TO_LOCAL_USING(emit->as, emit->prelude_offset, offsetof(mp_code_state_t, ip) / sizeof(uintptr_t), REG_ARG_1);

        // put address of code_state into first arg
        ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, 0, REG_ARG_1);

        // call mp_setup_code_state to prepare code_state structure
        #if N_THUMB
        asm_thumb_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4);
        #elif N_ARM
        asm_arm_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4);
        #else
        ASM_CALL_IND(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE);
        #endif

        // cache some locals in registers
        if (scope->num_locals > 0) {
            ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - 0, REG_LOCAL_1);
            if (scope->num_locals > 1) {
                ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - 1, REG_LOCAL_2);
                if (scope->num_locals > 2) {
                    ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - 2, REG_LOCAL_3);
                }
            }
        }

        // set the type of closed over variables
        for (mp_uint_t i = 0; i < scope->id_info_len; i++) {
            id_info_t *id = &scope->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL) {
                emit->local_vtype[id->local_num] = VTYPE_PYOBJ;
            }
        }
    }

}

STATIC void emit_native_end_pass(emit_t *emit) {
    if (!emit->last_emit_was_return_value) {
        ASM_EXIT(emit->as);
    }

    if (!emit->do_viper_types) {
        emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base);
        mp_asm_base_data(&emit->as->base, 1, 0x80 | ((emit->n_state >> 7) & 0x7f));
        mp_asm_base_data(&emit->as->base, 1, emit->n_state & 0x7f);
        mp_asm_base_data(&emit->as->base, 1, 0); // n_exc_stack
        mp_asm_base_data(&emit->as->base, 1, emit->scope->scope_flags);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->num_pos_args);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->num_kwonly_args);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->num_def_pos_args);

        // write code info
        #if MICROPY_PERSISTENT_CODE
        mp_asm_base_data(&emit->as->base, 1, 5);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name >> 8);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file);
        mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file >> 8);
        #else
        mp_asm_base_data(&emit->as->base, 1, 1);
        #endif

        // bytecode prelude: initialise closed over variables
        for (int i = 0; i < emit->scope->id_info_len; i++) {
            id_info_t *id = &emit->scope->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL) {
                assert(id->local_num < 255);
                mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell
            }
        }
        mp_asm_base_data(&emit->as->base, 1, 255); // end of list sentinel

        mp_asm_base_align(&emit->as->base, ASM_WORD_SIZE);
        emit->const_table_offset = mp_asm_base_get_code_pos(&emit->as->base);

        // write argument names as qstr objects
        // see comment in corresponding part of emitbc.c about the logic here
        for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) {
            qstr qst = MP_QSTR__star_;
            for (int j = 0; j < emit->scope->id_info_len; ++j) {
                id_info_t *id = &emit->scope->id_info[j];
                if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
                    qst = id->qst;
                    break;
                }
            }
            mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
        }

    }

    ASM_END_PASS(emit->as);

    // check stack is back to zero size
    assert(emit->stack_size == 0);

    if (emit->pass == MP_PASS_EMIT) {
        void *f = mp_asm_base_get_code(&emit->as->base);
        mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base);

        // compute type signature
        // note that the lower 4 bits of a vtype are tho correct MP_NATIVE_TYPE_xxx
        mp_uint_t type_sig = emit->return_vtype & 0xf;
        for (mp_uint_t i = 0; i < emit->scope->num_pos_args; i++) {
            type_sig |= (emit->local_vtype[i] & 0xf) << (i * 4 + 4);
        }

        mp_emit_glue_assign_native(emit->scope->raw_code,
            emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY,
            f, f_len, (mp_uint_t*)((byte*)f + emit->const_table_offset),
            emit->scope->num_pos_args, emit->scope->scope_flags, type_sig);
    }
}

STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) {
    return emit->last_emit_was_return_value;
}

STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) {
    assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
    emit->stack_size += stack_size_delta;
    if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
        emit->scope->stack_size = emit->stack_size;
    }
#ifdef DEBUG_PRINT
    DEBUG_printf("  adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta);
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg);
    }
    DEBUG_printf("\n");
#endif
}

STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) {
    DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta);
    // If we are adjusting the stack in a positive direction (pushing) then we
    // need to fill in values for the stack kind and vtype of the newly-pushed
    // entries.  These should be set to "value" (ie not reg or imm) because we
    // should only need to adjust the stack due to a jump to this part in the
    // code (and hence we have settled the stack before the jump).
    for (mp_int_t i = 0; i < delta; i++) {
        stack_info_t *si = &emit->stack_info[emit->stack_size + i];
        si->kind = STACK_VALUE;
        // TODO we don't know the vtype to use here.  At the moment this is a
        // hack to get the case of multi comparison working.
        if (delta == 1) {
            si->vtype = emit->saved_stack_vtype;
        } else {
            si->vtype = VTYPE_PYOBJ;
        }
    }
    adjust_stack(emit, delta);
}

STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) {
    (void)emit;
    (void)source_line;
}

// this must be called at start of emit functions
STATIC void emit_native_pre(emit_t *emit) {
    emit->last_emit_was_return_value = false;
}

// depth==0 is top, depth==1 is before top, etc
STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) {
    return &emit->stack_info[emit->stack_size - 1 - depth];
}

// depth==0 is top, depth==1 is before top, etc
STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) {
    return peek_stack(emit, depth)->vtype;
}

// pos=1 is TOS, pos=2 is next, etc
// use pos=0 for no skipping
STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
    skip_stack_pos = emit->stack_size - skip_stack_pos;
    for (int i = 0; i < emit->stack_size; i++) {
        if (i != skip_stack_pos) {
            stack_info_t *si = &emit->stack_info[i];
            if (si->kind == STACK_REG && si->data.u_reg == reg_needed) {
                si->kind = STACK_VALUE;
                ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i);
            }
        }
    }
}

STATIC void need_reg_all(emit_t *emit) {
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        if (si->kind == STACK_REG) {
            si->kind = STACK_VALUE;
            ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i);
        }
    }
}

STATIC void need_stack_settled(emit_t *emit) {
    DEBUG_printf("  need_stack_settled; stack_size=%d\n", emit->stack_size);
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        if (si->kind == STACK_REG) {
            DEBUG_printf("    reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i);
            si->kind = STACK_VALUE;
            ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i);
        }
    }
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        if (si->kind == STACK_IMM) {
            DEBUG_printf("    imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i);
            si->kind = STACK_VALUE;
            ASM_MOV_IMM_TO_LOCAL_USING(emit->as, si->data.u_imm, emit->stack_start + i, REG_TEMP0);
        }
    }
}

// pos=1 is TOS, pos=2 is next, etc
STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
    need_reg_single(emit, reg_dest, pos);
    stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
    *vtype = si->vtype;
    switch (si->kind) {
        case STACK_VALUE:
            ASM_MOV_LOCAL_TO_REG(emit->as, emit->stack_start + emit->stack_size - pos, reg_dest);
            break;

        case STACK_REG:
            if (si->data.u_reg != reg_dest) {
                ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg);
            }
            break;

        case STACK_IMM:
            ASM_MOV_IMM_TO_REG(emit->as, si->data.u_imm, reg_dest);
            break;
    }
}

// does an efficient X=pop(); discard(); push(X)
// needs a (non-temp) register in case the poped element was stored in the stack
STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) {
    stack_info_t *si = &emit->stack_info[emit->stack_size - 2];
    si[0] = si[1];
    if (si->kind == STACK_VALUE) {
        // if folded element was on the stack we need to put it in a register
        ASM_MOV_LOCAL_TO_REG(emit->as, emit->stack_start + emit->stack_size - 1, reg_dest);
        si->kind = STACK_REG;
        si->data.u_reg = reg_dest;
    }
    adjust_stack(emit, -1);
}

// If stacked value is in a register and the register is not r1 or r2, then
// *reg_dest is set to that register.  Otherwise the value is put in *reg_dest.
STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) {
    emit->last_emit_was_return_value = false;
    stack_info_t *si = peek_stack(emit, 0);
    if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) {
        *vtype = si->vtype;
        *reg_dest = si->data.u_reg;
        need_reg_single(emit, *reg_dest, 1);
    } else {
        emit_access_stack(emit, 1, vtype, *reg_dest);
    }
    adjust_stack(emit, -1);
}

STATIC void emit_pre_pop_discard(emit_t *emit) {
    emit->last_emit_was_return_value = false;
    adjust_stack(emit, -1);
}

STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
    emit->last_emit_was_return_value = false;
    emit_access_stack(emit, 1, vtype, reg_dest);
    adjust_stack(emit, -1);
}

STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
    emit_pre_pop_reg(emit, vtypea, rega);
    emit_pre_pop_reg(emit, vtypeb, regb);
}

STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
    emit_pre_pop_reg(emit, vtypea, rega);
    emit_pre_pop_reg(emit, vtypeb, regb);
    emit_pre_pop_reg(emit, vtypec, regc);
}

STATIC void emit_post(emit_t *emit) {
    (void)emit;
}

STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) {
    stack_info_t *si = &emit->stack_info[emit->stack_size - 1];
    si->vtype = new_vtype;
}

STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
    stack_info_t *si = &emit->stack_info[emit->stack_size];
    si->vtype = vtype;
    si->kind = STACK_REG;
    si->data.u_reg = reg;
    adjust_stack(emit, 1);
}

STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) {
    stack_info_t *si = &emit->stack_info[emit->stack_size];
    si->vtype = vtype;
    si->kind = STACK_IMM;
    si->data.u_imm = imm;
    adjust_stack(emit, 1);
}

STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
    emit_post_push_reg(emit, vtypea, rega);
    emit_post_push_reg(emit, vtypeb, regb);
}

STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
    emit_post_push_reg(emit, vtypea, rega);
    emit_post_push_reg(emit, vtypeb, regb);
    emit_post_push_reg(emit, vtypec, regc);
}

STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
    emit_post_push_reg(emit, vtypea, rega);
    emit_post_push_reg(emit, vtypeb, regb);
    emit_post_push_reg(emit, vtypec, regc);
    emit_post_push_reg(emit, vtyped, regd);
}

STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) {
    need_reg_all(emit);
    ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}

STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
    need_reg_all(emit);
    ASM_MOV_IMM_TO_REG(emit->as, arg_val, arg_reg);
    ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}

// the first arg is stored in the code aligned on a mp_uint_t boundary
STATIC void emit_call_with_imm_arg_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
    need_reg_all(emit);
    ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, arg_val, arg_reg);
    ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}

STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) {
    need_reg_all(emit);
    ASM_MOV_IMM_TO_REG(emit->as, arg_val1, arg_reg1);
    ASM_MOV_IMM_TO_REG(emit->as, arg_val2, arg_reg2);
    ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}

// the first arg is stored in the code aligned on a mp_uint_t boundary
STATIC void emit_call_with_3_imm_args_and_first_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2, mp_int_t arg_val3, int arg_reg3) {
    need_reg_all(emit);
    ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, arg_val1, arg_reg1);
    ASM_MOV_IMM_TO_REG(emit->as, arg_val2, arg_reg2);
    ASM_MOV_IMM_TO_REG(emit->as, arg_val3, arg_reg3);
    ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}

// vtype of all n_pop objects is VTYPE_PYOBJ
// Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack.
// If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET.
// Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer).
STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) {
    need_reg_all(emit);

    // First, store any immediate values to their respective place on the stack.
    for (mp_uint_t i = 0; i < n_pop; i++) {
        stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
        // must push any imm's to stack
        // must convert them to VTYPE_PYOBJ for viper code
        if (si->kind == STACK_IMM) {
            si->kind = STACK_VALUE;
            switch (si->vtype) {
                case VTYPE_PYOBJ:
                    ASM_MOV_IMM_TO_LOCAL_USING(emit->as, si->data.u_imm, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                    break;
                case VTYPE_BOOL:
                    if (si->data.u_imm == 0) {
                        ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (mp_uint_t)mp_const_false, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                    } else {
                        ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (mp_uint_t)mp_const_true, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                    }
                    si->vtype = VTYPE_PYOBJ;
                    break;
                case VTYPE_INT:
                case VTYPE_UINT:
                    ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm), emit->stack_start + emit->stack_size - 1 - i, reg_dest);
                    si->vtype = VTYPE_PYOBJ;
                    break;
                default:
                    // not handled
                    mp_not_implemented("conversion to object");
            }
        }

        // verify that this value is on the stack
        assert(si->kind == STACK_VALUE);
    }

    // Second, convert any non-VTYPE_PYOBJ to that type.
    for (mp_uint_t i = 0; i < n_pop; i++) {
        stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
        if (si->vtype != VTYPE_PYOBJ) {
            mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i;
            ASM_MOV_LOCAL_TO_REG(emit->as, local_num, REG_ARG_1);
            emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type
            ASM_MOV_REG_TO_LOCAL(emit->as, REG_RET, local_num);
            si->vtype = VTYPE_PYOBJ;
            DEBUG_printf("  convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num);
        }
    }

    // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest.
    adjust_stack(emit, -n_pop);
    ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, emit->stack_start + emit->stack_size, reg_dest);
}

// vtype of all n_push objects is VTYPE_PYOBJ
STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) {
    need_reg_all(emit);
    for (mp_uint_t i = 0; i < n_push; i++) {
        emit->stack_info[emit->stack_size + i].kind = STACK_VALUE;
        emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ;
    }
    ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, emit->stack_start + emit->stack_size, reg_dest);
    adjust_stack(emit, n_push);
}

STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) {
    DEBUG_printf("label_assign(" UINT_FMT ")\n", l);
    emit_native_pre(emit);
    // need to commit stack because we can jump here from elsewhere
    need_stack_settled(emit);
    mp_asm_base_label_assign(&emit->as->base, l);
    emit_post(emit);
}

STATIC void emit_native_import_name(emit_t *emit, qstr qst) {
    DEBUG_printf("import_name %s\n", qstr_str(qst));

    // get arguments from stack: arg2 = fromlist, arg3 = level
    // if using viper types these arguments must be converted to proper objects
    if (emit->do_viper_types) {
        // fromlist should be None or a tuple
        stack_info_t *top = peek_stack(emit, 0);
        if (top->vtype == VTYPE_PTR_NONE) {
            emit_pre_pop_discard(emit);
            ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)mp_const_none, REG_ARG_2);
        } else {
            vtype_kind_t vtype_fromlist;
            emit_pre_pop_reg(emit, &vtype_fromlist, REG_ARG_2);
            assert(vtype_fromlist == VTYPE_PYOBJ);
        }

        // level argument should be an immediate integer
        top = peek_stack(emit, 0);
        assert(top->vtype == VTYPE_INT && top->kind == STACK_IMM);
        ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(top->data.u_imm), REG_ARG_3);
        emit_pre_pop_discard(emit);

    } else {
        vtype_kind_t vtype_fromlist;
        vtype_kind_t vtype_level;
        emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3);
        assert(vtype_fromlist == VTYPE_PYOBJ);
        assert(vtype_level == VTYPE_PYOBJ);
    }

    emit_call_with_imm_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_import_from(emit_t *emit, qstr qst) {
    DEBUG_printf("import_from %s\n", qstr_str(qst));
    emit_native_pre(emit);
    vtype_kind_t vtype_module;
    emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module
    assert(vtype_module == VTYPE_PYOBJ);
    emit_call_with_imm_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_import_star(emit_t *emit) {
    DEBUG_printf("import_star\n");
    vtype_kind_t vtype_module;
    emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module
    assert(vtype_module == VTYPE_PYOBJ);
    emit_call(emit, MP_F_IMPORT_ALL);
    emit_post(emit);
}

STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
    DEBUG_printf("load_const_tok(tok=%u)\n", tok);
    emit_native_pre(emit);
    vtype_kind_t vtype;
    mp_uint_t val;
    if (emit->do_viper_types) {
        switch (tok) {
            case MP_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break;
            case MP_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break;
            case MP_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break;
            default:
                assert(tok == MP_TOKEN_ELLIPSIS);
                vtype = VTYPE_PYOBJ; val = (mp_uint_t)&mp_const_ellipsis_obj; break;
        }
    } else {
        vtype = VTYPE_PYOBJ;
        switch (tok) {
            case MP_TOKEN_KW_NONE: val = (mp_uint_t)mp_const_none; break;
            case MP_TOKEN_KW_FALSE: val = (mp_uint_t)mp_const_false; break;
            case MP_TOKEN_KW_TRUE: val = (mp_uint_t)mp_const_true; break;
            default:
                assert(tok == MP_TOKEN_ELLIPSIS);
                val = (mp_uint_t)&mp_const_ellipsis_obj; break;
        }
    }
    emit_post_push_imm(emit, vtype, val);
}

STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) {
    DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg);
    emit_native_pre(emit);
    if (emit->do_viper_types) {
        emit_post_push_imm(emit, VTYPE_INT, arg);
    } else {
        emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(arg));
    }
}

STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) {
    emit_native_pre(emit);
    // TODO: Eventually we want to be able to work with raw pointers in viper to
    // do native array access.  For now we just load them as any other object.
    /*
    if (emit->do_viper_types) {
        // load a pointer to the asciiz string?
        emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst));
    } else
    */
    {
        emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
    }
}

STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) {
    emit_native_pre(emit);
    need_reg_single(emit, REG_RET, 0);
    ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, (mp_uint_t)obj, REG_RET);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_null(emit_t *emit) {
    emit_native_pre(emit);
    emit_post_push_imm(emit, VTYPE_PYOBJ, 0);
}

STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
    DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
    vtype_kind_t vtype = emit->local_vtype[local_num];
    if (vtype == VTYPE_UNBOUND) {
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "local '%q' used before type known", qst);
    }
    emit_native_pre(emit);
    if (local_num == 0) {
        emit_post_push_reg(emit, vtype, REG_LOCAL_1);
    } else if (local_num == 1) {
        emit_post_push_reg(emit, vtype, REG_LOCAL_2);
    } else if (local_num == 2) {
        emit_post_push_reg(emit, vtype, REG_LOCAL_3);
    } else {
        need_reg_single(emit, REG_TEMP0, 0);
        if (emit->do_viper_types) {
            ASM_MOV_LOCAL_TO_REG(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0);
        } else {
            ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - local_num, REG_TEMP0);
        }
        emit_post_push_reg(emit, vtype, REG_TEMP0);
    }
}

STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
    DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
    need_reg_single(emit, REG_RET, 0);
    emit_native_load_fast(emit, qst, local_num);
    vtype_kind_t vtype;
    int reg_base = REG_RET;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1);
    // closed over vars are always Python objects
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_name(emit_t *emit, qstr qst) {
    DEBUG_printf("load_name(%s)\n", qstr_str(qst));
    emit_native_pre(emit);
    emit_call_with_imm_arg(emit, MP_F_LOAD_NAME, qst, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_global(emit_t *emit, qstr qst) {
    DEBUG_printf("load_global(%s)\n", qstr_str(qst));
    emit_native_pre(emit);
    // check for builtin casting operators
    if (emit->do_viper_types && qst == MP_QSTR_int) {
        emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_INT);
    } else if (emit->do_viper_types && qst == MP_QSTR_uint) {
        emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_UINT);
    } else if (emit->do_viper_types && qst == MP_QSTR_ptr) {
        emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR);
    } else if (emit->do_viper_types && qst == MP_QSTR_ptr8) {
        emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR8);
    } else if (emit->do_viper_types && qst == MP_QSTR_ptr16) {
        emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR16);
    } else if (emit->do_viper_types && qst == MP_QSTR_ptr32) {
        emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR32);
    } else {
        emit_call_with_imm_arg(emit, MP_F_LOAD_GLOBAL, qst, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
}

STATIC void emit_native_load_attr(emit_t *emit, qstr qst) {
    // depends on type of subject:
    //  - integer, function, pointer to integers: error
    //  - pointer to structure: get member, quite easy
    //  - Python object: call mp_load_attr, and needs to be typed to convert result
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
    assert(vtype_base == VTYPE_PYOBJ);
    emit_call_with_imm_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) {
    if (is_super) {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr
        emit_call_with_imm_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name
    } else {
        vtype_kind_t vtype_base;
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
        assert(vtype_base == VTYPE_PYOBJ);
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
        emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name
    }
}

STATIC void emit_native_load_build_class(emit_t *emit) {
    emit_native_pre(emit);
    emit_call(emit, MP_F_LOAD_BUILD_CLASS);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_subscr(emit_t *emit) {
    DEBUG_printf("load_subscr\n");
    // need to compile: base[index]

    // pop: index, base
    // optimise case where index is an immediate
    vtype_kind_t vtype_base = peek_vtype(emit, 1);

    if (vtype_base == VTYPE_PYOBJ) {
        // standard Python subscr
        // TODO factor this implicit cast code with other uses of it
        vtype_kind_t vtype_index = peek_vtype(emit, 0);
        if (vtype_index == VTYPE_PYOBJ) {
            emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2);
        } else {
            emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1);
            emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type
            ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
        }
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
        emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        // viper load
        // TODO The different machine architectures have very different
        // capabilities and requirements for loads, so probably best to
        // write a completely separate load-optimiser for each one.
        stack_info_t *top = peek_stack(emit, 0);
        if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
            // index is an immediate
            mp_int_t index_value = top->data.u_imm;
            emit_pre_pop_discard(emit); // discard index
            int reg_base = REG_ARG_1;
            int reg_index = REG_ARG_2;
            emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_index);
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb ldrb r1, [r2, r3]
                    if (index_value != 0) {
                        // index is non-zero
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_IMM_TO_REG(emit->as, index_value, reg_index);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
                        reg_base = reg_index;
                    }
                    ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_IMM_TO_REG(emit->as, index_value << 1, reg_index);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
                        reg_base = reg_index;
                    }
                    ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to 32-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_IMM_TO_REG(emit->as, index_value << 2, reg_index);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
                        reg_base = reg_index;
                    }
                    ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        "can't load from '%q'", vtype_to_qstr(vtype_base));
            }
        } else {
            // index is not an immediate
            vtype_kind_t vtype_index;
            int reg_index = REG_ARG_2;
            emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, REG_ARG_1);
            emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
            if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    "can't load with '%q' index", vtype_to_qstr(vtype_index));
            }
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb ldrb r1, [r2, r3]
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to word-size memory
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        "can't load from '%q'", vtype_to_qstr(vtype_base));
            }
        }
        emit_post_push_reg(emit, VTYPE_INT, REG_RET);
    }
}

STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
    vtype_kind_t vtype;
    if (local_num == 0) {
        emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1);
    } else if (local_num == 1) {
        emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2);
    } else if (local_num == 2) {
        emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3);
    } else {
        emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
        if (emit->do_viper_types) {
            ASM_MOV_REG_TO_LOCAL(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM);
        } else {
            ASM_MOV_REG_TO_LOCAL(emit->as, REG_TEMP0, STATE_START + emit->n_state - 1 - local_num);
        }
    }
    emit_post(emit);

    // check types
    if (emit->local_vtype[local_num] == VTYPE_UNBOUND) {
        // first time this local is assigned, so give it a type of the object stored in it
        emit->local_vtype[local_num] = vtype;
    } else if (emit->local_vtype[local_num] != vtype) {
        // type of local is not the same as object stored in it
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
            "local '%q' has type '%q' but source is '%q'",
            qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype));
    }
}

STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
    DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
    need_reg_single(emit, REG_TEMP0, 0);
    need_reg_single(emit, REG_TEMP1, 0);
    emit_native_load_fast(emit, qst, local_num);
    vtype_kind_t vtype;
    int reg_base = REG_TEMP0;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
    int reg_src = REG_TEMP1;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg_src, reg_base, reg_base);
    ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1);
    emit_post(emit);
}

STATIC void emit_native_store_name(emit_t *emit, qstr qst) {
    // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type))
    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
    assert(vtype == VTYPE_PYOBJ);
    emit_call_with_imm_arg(emit, MP_F_STORE_NAME, qst, REG_ARG_1); // arg1 = name
    emit_post(emit);
}

STATIC void emit_native_store_global(emit_t *emit, qstr qst) {
    vtype_kind_t vtype = peek_vtype(emit, 0);
    if (vtype == VTYPE_PYOBJ) {
        emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
    } else {
        emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
        emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type
        ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
    }
    emit_call_with_imm_arg(emit, MP_F_STORE_GLOBAL, qst, REG_ARG_1); // arg1 = name
    emit_post(emit);
}

STATIC void emit_native_store_attr(emit_t *emit, qstr qst) {
    vtype_kind_t vtype_base, vtype_val;
    emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value
    assert(vtype_base == VTYPE_PYOBJ);
    assert(vtype_val == VTYPE_PYOBJ);
    emit_call_with_imm_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
    emit_post(emit);
}

STATIC void emit_native_store_subscr(emit_t *emit) {
    DEBUG_printf("store_subscr\n");
    // need to compile: base[index] = value

    // pop: index, base, value
    // optimise case where index is an immediate
    vtype_kind_t vtype_base = peek_vtype(emit, 1);

    if (vtype_base == VTYPE_PYOBJ) {
        // standard Python subscr
        vtype_kind_t vtype_index = peek_vtype(emit, 0);
        vtype_kind_t vtype_value = peek_vtype(emit, 2);
        if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) {
            // need to implicitly convert non-objects to objects
            // TODO do this properly
            emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3);
            adjust_stack(emit, 3);
        }
        emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3);
        emit_call(emit, MP_F_OBJ_SUBSCR);
    } else {
        // viper store
        // TODO The different machine architectures have very different
        // capabilities and requirements for stores, so probably best to
        // write a completely separate store-optimiser for each one.
        stack_info_t *top = peek_stack(emit, 0);
        if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
            // index is an immediate
            mp_int_t index_value = top->data.u_imm;
            emit_pre_pop_discard(emit); // discard index
            vtype_kind_t vtype_value;
            int reg_base = REG_ARG_1;
            int reg_index = REG_ARG_2;
            int reg_value = REG_ARG_3;
            emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_value);
            #if N_X86
            // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
            emit_pre_pop_reg(emit, &vtype_value, reg_value);
            #else
            emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, reg_base, reg_index);
            #endif
            if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    "can't store '%q'", vtype_to_qstr(vtype_value));
            }
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb strb r1, [r2, r3]
                    if (index_value != 0) {
                        // index is non-zero
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_IMM_TO_REG(emit->as, index_value, reg_index);
                        #if N_ARM
                        asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
                        return;
                        #endif
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
                        reg_base = reg_index;
                    }
                    ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_IMM_TO_REG(emit->as, index_value << 1, reg_index);
                        #if N_ARM
                        asm_arm_strh_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
                        return;
                        #endif
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
                        reg_base = reg_index;
                    }
                    ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to 32-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_IMM_TO_REG(emit->as, index_value << 2, reg_index);
                        #if N_ARM
                        asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
                        return;
                        #endif
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
                        reg_base = reg_index;
                    }
                    ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        "can't store to '%q'", vtype_to_qstr(vtype_base));
            }
        } else {
            // index is not an immediate
            vtype_kind_t vtype_index, vtype_value;
            int reg_index = REG_ARG_2;
            int reg_value = REG_ARG_3;
            emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, reg_value);
            emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
            if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    "can't store with '%q' index", vtype_to_qstr(vtype_index));
            }
            #if N_X86
            // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
            emit_pre_pop_reg(emit, &vtype_value, reg_value);
            #else
            emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, REG_ARG_1, reg_index);
            #endif
            if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    "can't store '%q'", vtype_to_qstr(vtype_value));
            }
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb strb r1, [r2, r3]
                    #if N_ARM
                    asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
                    break;
                    #endif
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    #if N_ARM
                    asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
                    break;
                    #endif
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to 32-bit memory
                    #if N_ARM
                    asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
                    break;
                    #endif
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        "can't store to '%q'", vtype_to_qstr(vtype_base));
            }
        }

    }
}

STATIC void emit_native_delete_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
    // TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL
    // to mark deleted vars but then every var would need to be checked on
    // each access. Very inefficient, so just set value to None to enable GC.
    emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE);
    emit_native_store_fast(emit, qst, local_num);
}

STATIC void emit_native_delete_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
    // TODO implement me!
    (void)emit;
    (void)qst;
    (void)local_num;
}

STATIC void emit_native_delete_name(emit_t *emit, qstr qst) {
    emit_native_pre(emit);
    emit_call_with_imm_arg(emit, MP_F_DELETE_NAME, qst, REG_ARG_1);
    emit_post(emit);
}

STATIC void emit_native_delete_global(emit_t *emit, qstr qst) {
    emit_native_pre(emit);
    emit_call_with_imm_arg(emit, MP_F_DELETE_GLOBAL, qst, REG_ARG_1);
    emit_post(emit);
}

STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) {
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
    assert(vtype_base == VTYPE_PYOBJ);
    emit_call_with_2_imm_args(emit, MP_F_STORE_ATTR, qst, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); // arg2 = attribute name, arg3 = value (null for delete)
    emit_post(emit);
}

STATIC void emit_native_delete_subscr(emit_t *emit) {
    vtype_kind_t vtype_index, vtype_base;
    emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base
    assert(vtype_index == VTYPE_PYOBJ);
    assert(vtype_base == VTYPE_PYOBJ);
    emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
}

STATIC void emit_native_dup_top(emit_t *emit) {
    DEBUG_printf("dup_top\n");
    vtype_kind_t vtype;
    int reg = REG_TEMP0;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg, -1, -1);
    emit_post_push_reg_reg(emit, vtype, reg, vtype, reg);
}

STATIC void emit_native_dup_top_two(emit_t *emit) {
    vtype_kind_t vtype0, vtype1;
    emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
    emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0);
}

STATIC void emit_native_pop_top(emit_t *emit) {
    DEBUG_printf("pop_top\n");
    emit_pre_pop_discard(emit);
    emit_post(emit);
}

STATIC void emit_native_rot_two(emit_t *emit) {
    DEBUG_printf("rot_two\n");
    vtype_kind_t vtype0, vtype1;
    emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
    emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1);
}

STATIC void emit_native_rot_three(emit_t *emit) {
    DEBUG_printf("rot_three\n");
    vtype_kind_t vtype0, vtype1, vtype2;
    emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2);
    emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1);
}

STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) {
    DEBUG_printf("jump(label=" UINT_FMT ")\n", label);
    emit_native_pre(emit);
    // need to commit stack because we are jumping elsewhere
    need_stack_settled(emit);
    ASM_JUMP(emit->as, label);
    emit_post(emit);
}

STATIC void emit_native_jump_helper(emit_t *emit, bool pop) {
    vtype_kind_t vtype = peek_vtype(emit, 0);
    if (vtype == VTYPE_PYOBJ) {
        emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
        if (!pop) {
            adjust_stack(emit, 1);
        }
        emit_call(emit, MP_F_OBJ_IS_TRUE);
    } else {
        emit_pre_pop_reg(emit, &vtype, REG_RET);
        if (!pop) {
            adjust_stack(emit, 1);
        }
        if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) {
            EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                "can't implicitly convert '%q' to 'bool'", vtype_to_qstr(vtype));
        }
    }
    // For non-pop need to save the vtype so that emit_native_adjust_stack_size
    // can use it.  This is a bit of a hack.
    if (!pop) {
        emit->saved_stack_vtype = vtype;
    }
    // need to commit stack because we may jump elsewhere
    need_stack_settled(emit);
}

STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
    DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label);
    emit_native_jump_helper(emit, true);
    if (cond) {
        ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);
    } else {
        ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label);
    }
    emit_post(emit);
}

STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
    DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label);
    emit_native_jump_helper(emit, false);
    if (cond) {
        ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);
    } else {
        ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label);
    }
    adjust_stack(emit, -1);
    emit_post(emit);
}

STATIC void emit_native_break_loop(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
    (void)except_depth;
    emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); // TODO properly
}

STATIC void emit_native_continue_loop(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
    (void)except_depth;
    emit_native_jump(emit, label); // TODO properly
}

STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) {
    // the context manager is on the top of the stack
    // stack: (..., ctx_mgr)

    // get __exit__ method
    vtype_kind_t vtype;
    emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr
    assert(vtype == VTYPE_PYOBJ);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
    emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2);
    // stack: (..., ctx_mgr, __exit__, self)

    emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self
    emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__
    emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr
    emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__
    emit_post_push_reg(emit, vtype, REG_ARG_3); // self
    // stack: (..., __exit__, self)
    // REG_ARG_1=ctx_mgr

    // get __enter__ method
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
    emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name
    // stack: (..., __exit__, self, __enter__, self)

    // call __enter__ method
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self
    emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__
    // stack: (..., __exit__, self, as_value)

    // need to commit stack because we may jump elsewhere
    need_stack_settled(emit);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf
    emit_call(emit, MP_F_NLR_PUSH);
    ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);

    emit_access_stack(emit, sizeof(nlr_buf_t) / sizeof(mp_uint_t) + 1, &vtype, REG_RET); // access return value of __enter__
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__
    // stack: (..., __exit__, self, as_value, nlr_buf, as_value)
}

STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) {
    // note: label+1 is available as an auxiliary label

    // stack: (..., __exit__, self, as_value, nlr_buf)
    emit_native_pre(emit);
    emit_call(emit, MP_F_NLR_POP);
    adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)) - 1);
    // stack: (..., __exit__, self)

    // call __exit__
    emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
    emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
    emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
    emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);

    // jump to after with cleanup nlr_catch block
    adjust_stack(emit, 1); // dummy nlr_buf.prev
    emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); // nlr_buf.ret_val = no exception
    emit_native_jump(emit, label + 1);

    // nlr_catch
    emit_native_label_assign(emit, label);

    // adjust stack counter for: __exit__, self, as_value
    adjust_stack(emit, 3);
    // stack: (..., __exit__, self, as_value, nlr_buf.prev, nlr_buf.ret_val)

    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // get the thrown value (exc)
    adjust_stack(emit, -2); // discard nlr_buf.prev and as_value
    // stack: (..., __exit__, self)
    // REG_ARG_1=exc

    emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // self
    emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // __exit__
    adjust_stack(emit, 1); // dummy nlr_buf.prev
    emit_post_push_reg(emit, vtype, REG_ARG_1); // push exc to save it for later
    emit_post_push_reg(emit, vtype, REG_ARG_3); // __exit__
    emit_post_push_reg(emit, vtype, REG_ARG_2); // self
    // stack: (..., exc, __exit__, self)
    // REG_ARG_1=exc

    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc)
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc)
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value
    emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); // traceback info
    // stack: (..., exc, __exit__, self, type(exc), exc, traceback)

    // call __exit__ method
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
    emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);
    // stack: (..., exc)

    // if REG_RET is true then we need to replace top-of-stack with None (swallow exception)
    if (REG_ARG_1 != REG_RET) {
        ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET);
    }
    emit_call(emit, MP_F_OBJ_IS_TRUE);
    ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label + 1);

    // replace exc with None
    emit_pre_pop_discard(emit);
    emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);

    // end of with cleanup nlr_catch block
    emit_native_label_assign(emit, label + 1);
}

STATIC void emit_native_setup_except(emit_t *emit, mp_uint_t label) {
    emit_native_pre(emit);
    // need to commit stack because we may jump elsewhere
    need_stack_settled(emit);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf
    emit_call(emit, MP_F_NLR_PUSH);
    ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);
    emit_post(emit);
}

STATIC void emit_native_setup_finally(emit_t *emit, mp_uint_t label) {
    emit_native_setup_except(emit, label);
}

STATIC void emit_native_end_finally(emit_t *emit) {
    // logic:
    //   exc = pop_stack
    //   if exc == None: pass
    //   else: raise exc
    // the check if exc is None is done in the MP_F_NATIVE_RAISE stub
    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // get nlr_buf.ret_val
    emit_pre_pop_discard(emit); // discard nlr_buf.prev
    emit_call(emit, MP_F_NATIVE_RAISE);
    emit_post(emit);
}

STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) {
    // perhaps the difficult one, as we want to rewrite for loops using native code
    // in cases where we iterate over a Python object, can we use normal runtime calls?

    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
    assert(vtype == VTYPE_PYOBJ);
    if (use_stack) {
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS);
        emit_call(emit, MP_F_NATIVE_GETITER);
    } else {
        // mp_getiter will allocate the iter_buf on the heap
        ASM_MOV_IMM_TO_REG(emit->as, 0, REG_ARG_2);
        emit_call(emit, MP_F_NATIVE_GETITER);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
}

STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) {
    emit_native_pre(emit);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS);
    adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS);
    emit_call(emit, MP_F_NATIVE_ITERNEXT);
    ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)MP_OBJ_STOP_ITERATION, REG_TEMP1);
    ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_for_iter_end(emit_t *emit) {
    // adjust stack counter (we get here from for_iter ending, which popped the value for us)
    emit_native_pre(emit);
    adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS);
    emit_post(emit);
}

STATIC void emit_native_pop_block(emit_t *emit) {
    emit_native_pre(emit);
    emit_call(emit, MP_F_NLR_POP);
    adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)) + 1);
    emit_post(emit);
}

STATIC void emit_native_pop_except(emit_t *emit) {
    (void)emit;
}

STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
    if (vtype == VTYPE_PYOBJ) {
        emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        adjust_stack(emit, 1);
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
            "unary op %q not implemented", mp_unary_op_method_name[op]);
    }
}

STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) {
    DEBUG_printf("binary_op(" UINT_FMT ")\n", op);
    vtype_kind_t vtype_lhs = peek_vtype(emit, 1);
    vtype_kind_t vtype_rhs = peek_vtype(emit, 0);
    if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) {
        #if N_X64 || N_X86
        // special cases for x86 and shifting
        if (op == MP_BINARY_OP_LSHIFT
            || op == MP_BINARY_OP_INPLACE_LSHIFT
            || op == MP_BINARY_OP_RSHIFT
            || op == MP_BINARY_OP_INPLACE_RSHIFT) {
            #if N_X64
            emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET);
            #else
            emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET);
            #endif
            if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) {
                ASM_LSL_REG(emit->as, REG_RET);
            } else {
                ASM_ASR_REG(emit->as, REG_RET);
            }
            emit_post_push_reg(emit, VTYPE_INT, REG_RET);
            return;
        }
        #endif
        int reg_rhs = REG_ARG_3;
        emit_pre_pop_reg_flexible(emit, &vtype_rhs, &reg_rhs, REG_RET, REG_ARG_2);
        emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2);
        if (0) {
            // dummy
        #if !(N_X64 || N_X86)
        } else if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) {
            ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (op == MP_BINARY_OP_RSHIFT || op == MP_BINARY_OP_INPLACE_RSHIFT) {
            ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        #endif
        } else if (op == MP_BINARY_OP_OR || op == MP_BINARY_OP_INPLACE_OR) {
            ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (op == MP_BINARY_OP_XOR || op == MP_BINARY_OP_INPLACE_XOR) {
            ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (op == MP_BINARY_OP_AND || op == MP_BINARY_OP_INPLACE_AND) {
            ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (op == MP_BINARY_OP_ADD || op == MP_BINARY_OP_INPLACE_ADD) {
            ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (op == MP_BINARY_OP_SUBTRACT || op == MP_BINARY_OP_INPLACE_SUBTRACT) {
            ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (op == MP_BINARY_OP_MULTIPLY || op == MP_BINARY_OP_INPLACE_MULTIPLY) {
            ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
        } else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) {
            // comparison ops are (in enum order):
            //  MP_BINARY_OP_LESS
            //  MP_BINARY_OP_MORE
            //  MP_BINARY_OP_EQUAL
            //  MP_BINARY_OP_LESS_EQUAL
            //  MP_BINARY_OP_MORE_EQUAL
            //  MP_BINARY_OP_NOT_EQUAL
            need_reg_single(emit, REG_RET, 0);
            #if N_X64
            asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET);
            asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2);
            static byte ops[6] = {
                ASM_X64_CC_JL,
                ASM_X64_CC_JG,
                ASM_X64_CC_JE,
                ASM_X64_CC_JLE,
                ASM_X64_CC_JGE,
                ASM_X64_CC_JNE,
            };
            asm_x64_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET);
            #elif N_X86
            asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET);
            asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2);
            static byte ops[6] = {
                ASM_X86_CC_JL,
                ASM_X86_CC_JG,
                ASM_X86_CC_JE,
                ASM_X86_CC_JLE,
                ASM_X86_CC_JGE,
                ASM_X86_CC_JNE,
            };
            asm_x86_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET);
            #elif N_THUMB
            asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs);
            static uint16_t ops[6] = {
                ASM_THUMB_OP_ITE_GE,
                ASM_THUMB_OP_ITE_GT,
                ASM_THUMB_OP_ITE_EQ,
                ASM_THUMB_OP_ITE_GT,
                ASM_THUMB_OP_ITE_GE,
                ASM_THUMB_OP_ITE_EQ,
            };
            static byte ret[6] = { 0, 1, 1, 0, 1, 0, };
            asm_thumb_op16(emit->as, ops[op - MP_BINARY_OP_LESS]);
            asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS]);
            asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS] ^ 1);
            #elif N_ARM
            asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs);
            static uint ccs[6] = {
                ASM_ARM_CC_LT,
                ASM_ARM_CC_GT,
                ASM_ARM_CC_EQ,
                ASM_ARM_CC_LE,
                ASM_ARM_CC_GE,
                ASM_ARM_CC_NE,
            };
            asm_arm_setcc_reg(emit->as, REG_RET, ccs[op - MP_BINARY_OP_LESS]);
            #elif N_XTENSA
            static uint8_t ccs[6] = {
                ASM_XTENSA_CC_LT,
                0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args
                ASM_XTENSA_CC_EQ,
                0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args
                ASM_XTENSA_CC_GE,
                ASM_XTENSA_CC_NE,
            };
            uint8_t cc = ccs[op - MP_BINARY_OP_LESS];
            if ((cc & 0x80) == 0) {
                asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs);
            } else {
                asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2);
            }
            #else
                #error not implemented
            #endif
            emit_post_push_reg(emit, VTYPE_BOOL, REG_RET);
        } else {
            // TODO other ops not yet implemented
            adjust_stack(emit, 1);
            EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                "binary op %q not implemented", mp_binary_op_method_name[op]);
        }
    } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
        emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2);
        bool invert = false;
        if (op == MP_BINARY_OP_NOT_IN) {
            invert = true;
            op = MP_BINARY_OP_IN;
        } else if (op == MP_BINARY_OP_IS_NOT) {
            invert = true;
            op = MP_BINARY_OP_IS;
        }
        emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1);
        if (invert) {
            ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
            emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1);
        }
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        adjust_stack(emit, -1);
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
            "can't do binary op between '%q' and '%q'",
            vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs));
    }
}

STATIC void emit_native_build_tuple(emit_t *emit, mp_uint_t n_args) {
    // for viper: call runtime, with types of args
    //   if wrapped in byte_array, or something, allocates memory and fills it
    emit_native_pre(emit);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
    emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE, n_args, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple
}

STATIC void emit_native_build_list(emit_t *emit, mp_uint_t n_args) {
    emit_native_pre(emit);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
    emit_call_with_imm_arg(emit, MP_F_BUILD_LIST, n_args, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new list
}

STATIC void emit_native_build_map(emit_t *emit, mp_uint_t n_args) {
    emit_native_pre(emit);
    emit_call_with_imm_arg(emit, MP_F_BUILD_MAP, n_args, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new map
}

STATIC void emit_native_store_map(emit_t *emit) {
    vtype_kind_t vtype_key, vtype_value, vtype_map;
    emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map
    assert(vtype_key == VTYPE_PYOBJ);
    assert(vtype_value == VTYPE_PYOBJ);
    assert(vtype_map == VTYPE_PYOBJ);
    emit_call(emit, MP_F_STORE_MAP);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map
}

#if MICROPY_PY_BUILTINS_SET
STATIC void emit_native_build_set(emit_t *emit, mp_uint_t n_args) {
    emit_native_pre(emit);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
    emit_call_with_imm_arg(emit, MP_F_BUILD_SET, n_args, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set
}
#endif

#if MICROPY_PY_BUILTINS_SLICE
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) {
    DEBUG_printf("build_slice %d\n", n_args);
    if (n_args == 2) {
        vtype_kind_t vtype_start, vtype_stop;
        emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop
        assert(vtype_start == VTYPE_PYOBJ);
        assert(vtype_stop == VTYPE_PYOBJ);
        emit_call_with_imm_arg(emit, MP_F_NEW_SLICE, (mp_uint_t)mp_const_none, REG_ARG_3); // arg3 = step
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        assert(n_args == 3);
        vtype_kind_t vtype_start, vtype_stop, vtype_step;
        emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step
        assert(vtype_start == VTYPE_PYOBJ);
        assert(vtype_stop == VTYPE_PYOBJ);
        assert(vtype_step == VTYPE_PYOBJ);
        emit_call(emit, MP_F_NEW_SLICE);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
}
#endif

STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) {
    mp_fun_kind_t f;
    if (kind == SCOPE_LIST_COMP) {
        vtype_kind_t vtype_item;
        emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
        assert(vtype_item == VTYPE_PYOBJ);
        f = MP_F_LIST_APPEND;
    #if MICROPY_PY_BUILTINS_SET
    } else if (kind == SCOPE_SET_COMP) {
        vtype_kind_t vtype_item;
        emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
        assert(vtype_item == VTYPE_PYOBJ);
        f = MP_F_STORE_SET;
    #endif
    } else {
        // SCOPE_DICT_COMP
        vtype_kind_t vtype_key, vtype_value;
        emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3);
        assert(vtype_key == VTYPE_PYOBJ);
        assert(vtype_value == VTYPE_PYOBJ);
        f = MP_F_STORE_MAP;
    }
    vtype_kind_t vtype_collection;
    emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1);
    assert(vtype_collection == VTYPE_PYOBJ);
    emit_call(emit, f);
    emit_post(emit);
}

STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
    DEBUG_printf("unpack_sequence %d\n", n_args);
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
    assert(vtype_base == VTYPE_PYOBJ);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr
    emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args
}

STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
    DEBUG_printf("unpack_ex %d %d\n", n_left, n_right);
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
    assert(vtype_base == VTYPE_PYOBJ);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr
    emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right
}

STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them
    emit_native_pre(emit);
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        emit_call_with_3_imm_args_and_first_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1, (mp_uint_t)MP_OBJ_NULL, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
    } else {
        vtype_kind_t vtype_def_tuple, vtype_def_dict;
        emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2);
        assert(vtype_def_tuple == VTYPE_PYOBJ);
        assert(vtype_def_dict == VTYPE_PYOBJ);
        emit_call_with_imm_arg_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1);
    }
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    emit_native_pre(emit);
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over);
        ASM_MOV_IMM_TO_REG(emit->as, n_closed_over, REG_ARG_2);
    } else {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over + 2);
        ASM_MOV_IMM_TO_REG(emit->as, 0x100 | n_closed_over, REG_ARG_2);
    }
    ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, (mp_uint_t)scope->raw_code, REG_ARG_1);
    ASM_CALL_IND(emit->as, mp_fun_table[MP_F_MAKE_CLOSURE_FROM_RAW_CODE], MP_F_MAKE_CLOSURE_FROM_RAW_CODE);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags);

    // TODO: in viper mode, call special runtime routine with type info for args,
    // and wanted type info for return, to remove need for boxing/unboxing

    emit_native_pre(emit);
    vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword);
    if (vtype_fun == VTYPE_BUILTIN_CAST) {
        // casting operator
        assert(n_positional == 1 && n_keyword == 0);
        assert(!star_flags);
        DEBUG_printf("  cast to %d\n", vtype_fun);
        vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm;
        switch (peek_vtype(emit, 0)) {
            case VTYPE_PYOBJ: {
                vtype_kind_t vtype;
                emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
                emit_pre_pop_discard(emit);
                emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type
                emit_post_push_reg(emit, vtype_cast, REG_RET);
                break;
            }
            case VTYPE_BOOL:
            case VTYPE_INT:
            case VTYPE_UINT:
            case VTYPE_PTR:
            case VTYPE_PTR8:
            case VTYPE_PTR16:
            case VTYPE_PTR32:
            case VTYPE_PTR_NONE:
                emit_fold_stack_top(emit, REG_ARG_1);
                emit_post_top_set_vtype(emit, vtype_cast);
                break;
            default:
                // this can happen when casting a cast: int(int)
                mp_not_implemented("casting");
        }
    } else {
        assert(vtype_fun == VTYPE_PYOBJ);
        if (star_flags) {
            emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args
            emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        } else {
            if (n_positional != 0 || n_keyword != 0) {
                emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args
            }
            emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
            emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        }
    }
}

STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    if (star_flags) {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 4); // pointer to args
        emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        emit_native_pre(emit);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self
        emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
}

STATIC void emit_native_return_value(emit_t *emit) {
    DEBUG_printf("return_value\n");
    if (emit->do_viper_types) {
        if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) {
            emit_pre_pop_discard(emit);
            if (emit->return_vtype == VTYPE_PYOBJ) {
                ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)mp_const_none, REG_RET);
            } else {
                ASM_MOV_IMM_TO_REG(emit->as, 0, REG_RET);
            }
        } else {
            vtype_kind_t vtype;
            emit_pre_pop_reg(emit, &vtype, REG_RET);
            if (vtype != emit->return_vtype) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    "return expected '%q' but got '%q'",
                    vtype_to_qstr(emit->return_vtype), vtype_to_qstr(vtype));
            }
        }
    } else {
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_RET);
        assert(vtype == VTYPE_PYOBJ);
    }
    emit->last_emit_was_return_value = true;
    ASM_EXIT(emit->as);
}

STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) {
    assert(n_args == 1);
    vtype_kind_t vtype_exc;
    emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise
    if (vtype_exc != VTYPE_PYOBJ) {
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "must raise an object");
    }
    // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type))
    emit_call(emit, MP_F_NATIVE_RAISE);
}

STATIC void emit_native_yield_value(emit_t *emit) {
    // not supported (for now)
    (void)emit;
    mp_not_implemented("native yield");
}
STATIC void emit_native_yield_from(emit_t *emit) {
    // not supported (for now)
    (void)emit;
    mp_not_implemented("native yield from");
}

STATIC void emit_native_start_except_handler(emit_t *emit) {
    // This instruction follows an nlr_pop, so the stack counter is back to zero, when really
    // it should be up by a whole nlr_buf_t.  We then want to pop the nlr_buf_t here, but save
    // the first 2 elements, so we can get the thrown value.
    adjust_stack(emit, 1);
    vtype_kind_t vtype_nlr;
    emit_pre_pop_reg(emit, &vtype_nlr, REG_ARG_1); // get the thrown value
    emit_pre_pop_discard(emit); // discard the linked-list pointer in the nlr_buf
    emit_post_push_reg_reg_reg(emit, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1); // push the 3 exception items
}

STATIC void emit_native_end_except_handler(emit_t *emit) {
    adjust_stack(emit, -1);
}

const emit_method_table_t EXPORT_FUN(method_table) = {
    emit_native_set_native_type,
    emit_native_start_pass,
    emit_native_end_pass,
    emit_native_last_emit_was_return_value,
    emit_native_adjust_stack_size,
    emit_native_set_source_line,

    {
        emit_native_load_fast,
        emit_native_load_deref,
        emit_native_load_name,
        emit_native_load_global,
    },
    {
        emit_native_store_fast,
        emit_native_store_deref,
        emit_native_store_name,
        emit_native_store_global,
    },
    {
        emit_native_delete_fast,
        emit_native_delete_deref,
        emit_native_delete_name,
        emit_native_delete_global,
    },

    emit_native_label_assign,
    emit_native_import_name,
    emit_native_import_from,
    emit_native_import_star,
    emit_native_load_const_tok,
    emit_native_load_const_small_int,
    emit_native_load_const_str,
    emit_native_load_const_obj,
    emit_native_load_null,
    emit_native_load_attr,
    emit_native_load_method,
    emit_native_load_build_class,
    emit_native_load_subscr,
    emit_native_store_attr,
    emit_native_store_subscr,
    emit_native_delete_attr,
    emit_native_delete_subscr,
    emit_native_dup_top,
    emit_native_dup_top_two,
    emit_native_pop_top,
    emit_native_rot_two,
    emit_native_rot_three,
    emit_native_jump,
    emit_native_pop_jump_if,
    emit_native_jump_if_or_pop,
    emit_native_break_loop,
    emit_native_continue_loop,
    emit_native_setup_with,
    emit_native_with_cleanup,
    emit_native_setup_except,
    emit_native_setup_finally,
    emit_native_end_finally,
    emit_native_get_iter,
    emit_native_for_iter,
    emit_native_for_iter_end,
    emit_native_pop_block,
    emit_native_pop_except,
    emit_native_unary_op,
    emit_native_binary_op,
    emit_native_build_tuple,
    emit_native_build_list,
    emit_native_build_map,
    emit_native_store_map,
    #if MICROPY_PY_BUILTINS_SET
    emit_native_build_set,
    #endif
    #if MICROPY_PY_BUILTINS_SLICE
    emit_native_build_slice,
    #endif
    emit_native_store_comp,
    emit_native_unpack_sequence,
    emit_native_unpack_ex,
    emit_native_make_function,
    emit_native_make_closure,
    emit_native_call_function,
    emit_native_call_method,
    emit_native_return_value,
    emit_native_raise_varargs,
    emit_native_yield_value,
    emit_native_yield_from,

    emit_native_start_except_handler,
    emit_native_end_except_handler,
};

#endif