hyperbolic_arc_tangent.cpp
1.49 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <poincare/hyperbolic_arc_tangent.h>
#include <poincare/simplification_engine.h>
#include <poincare/trigonometry.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type HyperbolicArcTangent::type() const {
return Type::HyperbolicArcTangent;
}
Expression * HyperbolicArcTangent::clone() const {
HyperbolicArcTangent * a = new HyperbolicArcTangent(m_operands, true);
return a;
}
Expression * HyperbolicArcTangent::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
Expression * op = editableOperand(0);
if (op->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
return this;
}
template<typename T>
std::complex<T> HyperbolicArcTangent::computeOnComplex(const std::complex<T> c, AngleUnit angleUnit) {
std::complex<T> result = std::atanh(c);
/* atanh has a branch cut on ]-inf, -1[U]1, +inf[: it is then multivalued on
* this cut. We followed the convention chosen by the lib c++ of llvm on
* ]-inf+0i, -1+0i[ (warning: atanh takes the other side of the cut values on
* ]-inf-0i, -1-0i[) and choose the values on ]1+0i, +inf+0i[ to comply with
* atanh(-x) = -atanh(x) and sin(artanh(x)) = x/sqrt(1-x^2). */
if (c.imag() == 0 && c.real() > 1) {
result.imag(-result.imag()); // other side of the cut
}
return Trigonometry::RoundToMeaningfulDigits(result);
}
}