naperian_logarithm.cpp
1.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <poincare/naperian_logarithm.h>
#include <poincare/symbol.h>
#include <poincare/logarithm.h>
#include <poincare/simplification_engine.h>
extern "C" {
#include <assert.h>
#include <stdlib.h>
}
#include <ion.h>
#include <cmath>
namespace Poincare {
Expression::Type NaperianLogarithm::type() const {
return Type::NaperianLogarithm;
}
Expression * NaperianLogarithm::clone() const {
NaperianLogarithm * a = new NaperianLogarithm(m_operands, true);
return a;
}
Expression * NaperianLogarithm::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
if (operand(0)->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
const Expression * logOperands[2] = {operand(0)->clone(), new Symbol(Ion::Charset::Exponential)};
Logarithm * l = new Logarithm(logOperands, 2, false);
replaceWith(l, true);
return l->shallowReduce(context, angleUnit);
}
template<typename T>
std::complex<T> NaperianLogarithm::computeOnComplex(const std::complex<T> c, AngleUnit angleUnit) {
/* ln has a branch cut on ]-inf, 0]: it is then multivalued on this cut. We
* followed the convention chosen by the lib c++ of llvm on ]-inf+0i, 0+0i]
* (warning: ln takes the other side of the cut values on ]-inf-0i, 0-0i]). */
return std::log(c);
}
}