compile.c 138 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2015 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/scope.h"
#include "py/emit.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/asmbase.h"

#if MICROPY_ENABLE_COMPILER

// TODO need to mangle __attr names

#define INVALID_LABEL (0xffff)

typedef enum {
// define rules with a compile function
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
    PN_const_object, // special node for a constant, generic Python object
// define rules without a compile function
#define DEF_RULE(rule, comp, kind, ...)
#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
} pn_kind_t;

#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE

#if NEED_METHOD_TABLE

// we need a method table to do the lookup for the emitter functions
#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))

#else

// if we only have the bytecode emitter enabled then we can do a direct call to the functions
#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))

#endif

#if MICROPY_EMIT_NATIVE
// define a macro to access external native emitter
#if MICROPY_EMIT_X64
#define NATIVE_EMITTER(f) emit_native_x64_##f
#elif MICROPY_EMIT_X86
#define NATIVE_EMITTER(f) emit_native_x86_##f
#elif MICROPY_EMIT_THUMB
#define NATIVE_EMITTER(f) emit_native_thumb_##f
#elif MICROPY_EMIT_ARM
#define NATIVE_EMITTER(f) emit_native_arm_##f
#elif MICROPY_EMIT_XTENSA
#define NATIVE_EMITTER(f) emit_native_xtensa_##f
#else
#error "unknown native emitter"
#endif
#endif

#if MICROPY_EMIT_INLINE_ASM
// define macros for inline assembler
#if MICROPY_EMIT_INLINE_THUMB
#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
#define ASM_EMITTER(f) emit_inline_thumb_##f
#elif MICROPY_EMIT_INLINE_XTENSA
#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
#define ASM_EMITTER(f) emit_inline_xtensa_##f
#else
#error "unknown asm emitter"
#endif
#endif

#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))

// elements in this struct are ordered to make it compact
typedef struct _compiler_t {
    qstr source_file;

    uint8_t is_repl;
    uint8_t pass; // holds enum type pass_kind_t
    uint8_t have_star;

    // try to keep compiler clean from nlr
    mp_obj_t compile_error; // set to an exception object if there's an error
    size_t compile_error_line; // set to best guess of line of error

    uint next_label;

    uint16_t num_dict_params;
    uint16_t num_default_params;

    uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
    uint16_t continue_label;
    uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
    uint16_t break_continue_except_level;

    scope_t *scope_head;
    scope_t *scope_cur;

    emit_t *emit;                                   // current emitter
    #if NEED_METHOD_TABLE
    const emit_method_table_t *emit_method_table;   // current emit method table
    #endif

    #if MICROPY_EMIT_INLINE_ASM
    emit_inline_asm_t *emit_inline_asm;                                   // current emitter for inline asm
    const emit_inline_asm_method_table_t *emit_inline_asm_method_table;   // current emit method table for inline asm
    #endif
} compiler_t;

STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
    // if the line of the error is unknown then try to update it from the pn
    if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
        comp->compile_error_line = ((mp_parse_node_struct_t*)pn)->source_line;
    }
}

STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) {
    // only register the error if there has been no other error
    if (comp->compile_error == MP_OBJ_NULL) {
        comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
        compile_error_set_line(comp, pn);
    }
}

STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);

STATIC uint comp_next_label(compiler_t *comp) {
    return comp->next_label++;
}

STATIC void compile_increase_except_level(compiler_t *comp) {
    comp->cur_except_level += 1;
    if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
        comp->scope_cur->exc_stack_size = comp->cur_except_level;
    }
}

STATIC void compile_decrease_except_level(compiler_t *comp) {
    assert(comp->cur_except_level > 0);
    comp->cur_except_level -= 1;
}

STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
    scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options);
    scope->parent = comp->scope_cur;
    scope->next = NULL;
    if (comp->scope_head == NULL) {
        comp->scope_head = scope;
    } else {
        scope_t *s = comp->scope_head;
        while (s->next != NULL) {
            s = s->next;
        }
        s->next = scope;
    }
    return scope;
}

typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);

STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        for (int i = 0; i < num_nodes; i++) {
            f(comp, pns->nodes[i]);
        }
    } else if (!MP_PARSE_NODE_IS_NULL(pn)) {
        f(comp, pn);
    }
}

STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    for (int i = 0; i < num_nodes; i++) {
        compile_node(comp, pns->nodes[i]);
        if (comp->compile_error != MP_OBJ_NULL) {
            // add line info for the error in case it didn't have a line number
            compile_error_set_line(comp, pns->nodes[i]);
            return;
        }
    }
}

STATIC void compile_load_id(compiler_t *comp, qstr qst) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_emit_common_get_id_for_load(comp->scope_cur, qst);
    } else {
        #if NEED_METHOD_TABLE
        mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
        #else
        mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
        #endif
    }
}

STATIC void compile_store_id(compiler_t *comp, qstr qst) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
    } else {
        #if NEED_METHOD_TABLE
        mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
        #else
        mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
        #endif
    }
}

STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
    } else {
        #if NEED_METHOD_TABLE
        mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
        #else
        mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
        #endif
    }
}

STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
    int total = 0;
    if (!MP_PARSE_NODE_IS_NULL(pn)) {
        compile_node(comp, pn);
        total += 1;
    }
    if (pns_list != NULL) {
        int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
        for (int i = 0; i < n; i++) {
            compile_node(comp, pns_list->nodes[i]);
        }
        total += n;
    }
    EMIT_ARG(build_tuple, total);
}

STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // a simple tuple expression
    c_tuple(comp, MP_PARSE_NODE_NULL, pns);
}

STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
    if (mp_parse_node_is_const_false(pn)) {
        if (jump_if == false) {
            EMIT_ARG(jump, label);
        }
        return;
    } else if (mp_parse_node_is_const_true(pn)) {
        if (jump_if == true) {
            EMIT_ARG(jump, label);
        }
        return;
    } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
            if (jump_if == false) {
            and_or_logic1:;
                uint label2 = comp_next_label(comp);
                for (int i = 0; i < n - 1; i++) {
                    c_if_cond(comp, pns->nodes[i], !jump_if, label2);
                }
                c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
                EMIT_ARG(label_assign, label2);
            } else {
            and_or_logic2:
                for (int i = 0; i < n; i++) {
                    c_if_cond(comp, pns->nodes[i], jump_if, label);
                }
            }
            return;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
            if (jump_if == false) {
                goto and_or_logic2;
            } else {
                goto and_or_logic1;
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
            c_if_cond(comp, pns->nodes[0], !jump_if, label);
            return;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
            // cond is something in parenthesis
            if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                // empty tuple, acts as false for the condition
                if (jump_if == false) {
                    EMIT_ARG(jump, label);
                }
            } else {
                assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
                // non-empty tuple, acts as true for the condition
                if (jump_if == true) {
                    EMIT_ARG(jump, label);
                }
            }
            return;
        }
    }

    // nothing special, fall back to default compiling for node and jump
    compile_node(comp, pn);
    EMIT_ARG(pop_jump_if, jump_if, label);
}

typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);

STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
    if (assign_kind != ASSIGN_AUG_STORE) {
        compile_node(comp, pns->nodes[0]);
    }

    if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
        mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
        if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
            int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
            if (assign_kind != ASSIGN_AUG_STORE) {
                for (int i = 0; i < n - 1; i++) {
                    compile_node(comp, pns1->nodes[i]);
                }
            }
            assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
            pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
        }
        if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
            if (assign_kind == ASSIGN_AUG_STORE) {
                EMIT(rot_three);
                EMIT(store_subscr);
            } else {
                compile_node(comp, pns1->nodes[0]);
                if (assign_kind == ASSIGN_AUG_LOAD) {
                    EMIT(dup_top_two);
                    EMIT(load_subscr);
                } else {
                    EMIT(store_subscr);
                }
            }
            return;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
            assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
            if (assign_kind == ASSIGN_AUG_LOAD) {
                EMIT(dup_top);
                EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
            } else {
                if (assign_kind == ASSIGN_AUG_STORE) {
                    EMIT(rot_two);
                }
                EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
            }
            return;
        }
    }

    compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression");
}

// we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail)
STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) {
    uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1;

    // look for star expression
    uint have_star_index = -1;
    if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) {
        EMIT_ARG(unpack_ex, 0, num_tail);
        have_star_index = 0;
    }
    for (uint i = 0; i < num_tail; i++) {
        if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
            if (have_star_index == (uint)-1) {
                EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
                have_star_index = num_head + i;
            } else {
                compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment");
                return;
            }
        }
    }
    if (have_star_index == (uint)-1) {
        EMIT_ARG(unpack_sequence, num_head + num_tail);
    }
    if (num_head != 0) {
        if (0 == have_star_index) {
            c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE);
        } else {
            c_assign(comp, node_head, ASSIGN_STORE);
        }
    }
    for (uint i = 0; i < num_tail; i++) {
        if (num_head + i == have_star_index) {
            c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE);
        } else {
            c_assign(comp, nodes_tail[i], ASSIGN_STORE);
        }
    }
}

// assigns top of stack to pn
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
    assert(!MP_PARSE_NODE_IS_NULL(pn));
    if (MP_PARSE_NODE_IS_LEAF(pn)) {
        if (MP_PARSE_NODE_IS_ID(pn)) {
            qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
            switch (assign_kind) {
                case ASSIGN_STORE:
                case ASSIGN_AUG_STORE:
                    compile_store_id(comp, arg);
                    break;
                case ASSIGN_AUG_LOAD:
                default:
                    compile_load_id(comp, arg);
                    break;
            }
        } else {
            goto cannot_assign;
        }
    } else {
        // pn must be a struct
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
            case PN_atom_expr_normal:
                // lhs is an index or attribute
                c_assign_atom_expr(comp, pns, assign_kind);
                break;

            case PN_testlist_star_expr:
            case PN_exprlist:
                // lhs is a tuple
                if (assign_kind != ASSIGN_STORE) {
                    goto cannot_assign;
                }
                c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
                break;

            case PN_atom_paren:
                // lhs is something in parenthesis
                if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                    // empty tuple
                    goto cannot_assign;
                } else {
                    assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
                    if (assign_kind != ASSIGN_STORE) {
                        goto cannot_assign;
                    }
                    pns = (mp_parse_node_struct_t*)pns->nodes[0];
                    goto testlist_comp;
                }
                break;

            case PN_atom_bracket:
                // lhs is something in brackets
                if (assign_kind != ASSIGN_STORE) {
                    goto cannot_assign;
                }
                if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                    // empty list, assignment allowed
                    c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL);
                } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
                    pns = (mp_parse_node_struct_t*)pns->nodes[0];
                    goto testlist_comp;
                } else {
                    // brackets around 1 item
                    c_assign_tuple(comp, pns->nodes[0], 0, NULL);
                }
                break;

            default:
                goto cannot_assign;
        }
        return;

        testlist_comp:
        // lhs is a sequence
        if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
            mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
                // sequence of one item, with trailing comma
                assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
                c_assign_tuple(comp, pns->nodes[0], 0, NULL);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
                // sequence of many items
                uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2);
                c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
                goto cannot_assign;
            } else {
                // sequence with 2 items
                goto sequence_with_2_items;
            }
        } else {
            // sequence with 2 items
            sequence_with_2_items:
            c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes);
        }
        return;
    }
    return;

    cannot_assign:
    compile_syntax_error(comp, pn, "can't assign to expression");
}

// stuff for lambda and comprehensions and generators:
//  if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
//  if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
//  if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
    assert(n_pos_defaults >= 0);
    assert(n_kw_defaults >= 0);

    // set flags
    if (n_kw_defaults > 0) {
        this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
    }
    this_scope->num_def_pos_args = n_pos_defaults;

    // make closed over variables, if any
    // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
    int nfree = 0;
    if (comp->scope_cur->kind != SCOPE_MODULE) {
        for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
            id_info_t *id = &comp->scope_cur->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
                for (int j = 0; j < this_scope->id_info_len; j++) {
                    id_info_t *id2 = &this_scope->id_info[j];
                    if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
                        // in MicroPython we load closures using LOAD_FAST
                        EMIT_LOAD_FAST(id->qst, id->local_num);
                        nfree += 1;
                    }
                }
            }
        }
    }

    // make the function/closure
    if (nfree == 0) {
        EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
    } else {
        EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
    }
}

STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
    // For efficiency of the code below we extract the parse-node kind here
    int pn_kind;
    if (MP_PARSE_NODE_IS_ID(pn)) {
        pn_kind = -1;
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT(pn));
        pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn);
    }

    if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
        comp->have_star = true;
        /* don't need to distinguish bare from named star
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
            // bare star
        } else {
            // named star
        }
        */

    } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
        // named double star
        // TODO do we need to do anything with this?

    } else {
        mp_parse_node_t pn_id;
        mp_parse_node_t pn_equal;
        if (pn_kind == -1) {
            // this parameter is just an id

            pn_id = pn;
            pn_equal = MP_PARSE_NODE_NULL;

        } else if (pn_kind == PN_typedargslist_name) {
            // this parameter has a colon and/or equal specifier

            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            pn_id = pns->nodes[0];
            //pn_colon = pns->nodes[1]; // unused
            pn_equal = pns->nodes[2];

        } else {
            assert(pn_kind == PN_varargslist_name); // should be
            // this parameter has an equal specifier

            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            pn_id = pns->nodes[0];
            pn_equal = pns->nodes[1];
        }

        if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
            // this parameter does not have a default value

            // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
            if (!comp->have_star && comp->num_default_params != 0) {
                compile_syntax_error(comp, pn, "non-default argument follows default argument");
                return;
            }

        } else {
            // this parameter has a default value
            // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why

            if (comp->have_star) {
                comp->num_dict_params += 1;
                // in MicroPython we put the default dict parameters into a dictionary using the bytecode
                if (comp->num_dict_params == 1) {
                    // in MicroPython we put the default positional parameters into a tuple using the bytecode
                    // we need to do this here before we start building the map for the default keywords
                    if (comp->num_default_params > 0) {
                        EMIT_ARG(build_tuple, comp->num_default_params);
                    } else {
                        EMIT(load_null); // sentinel indicating empty default positional args
                    }
                    // first default dict param, so make the map
                    EMIT_ARG(build_map, 0);
                }

                // compile value then key, then store it to the dict
                compile_node(comp, pn_equal);
                EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
                EMIT(store_map);
            } else {
                comp->num_default_params += 1;
                compile_node(comp, pn_equal);
            }
        }
    }
}

STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
    // When we call compile_funcdef_lambdef_param below it can compile an arbitrary
    // expression for default arguments, which may contain a lambda.  The lambda will
    // call here in a nested way, so we must save and restore the relevant state.
    bool orig_have_star = comp->have_star;
    uint16_t orig_num_dict_params = comp->num_dict_params;
    uint16_t orig_num_default_params = comp->num_default_params;

    // compile default parameters
    comp->have_star = false;
    comp->num_dict_params = 0;
    comp->num_default_params = 0;
    apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);

    if (comp->compile_error != MP_OBJ_NULL) {
        return;
    }

    // in MicroPython we put the default positional parameters into a tuple using the bytecode
    // the default keywords args may have already made the tuple; if not, do it now
    if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
        EMIT_ARG(build_tuple, comp->num_default_params);
        EMIT(load_null); // sentinel indicating empty default keyword args
    }

    // make the function
    close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);

    // restore state
    comp->have_star = orig_have_star;
    comp->num_dict_params = orig_num_dict_params;
    comp->num_default_params = orig_num_default_params;
}

// leaves function object on stack
// returns function name
STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this function
        scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
        // store the function scope so the compiling function can use it at each pass
        pns->nodes[4] = (mp_parse_node_t)s;
    }

    // get the scope for this function
    scope_t *fscope = (scope_t*)pns->nodes[4];

    // compile the function definition
    compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);

    // return its name (the 'f' in "def f(...):")
    return fscope->simple_name;
}

// leaves class object on stack
// returns class name
STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this class
        scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
        // store the class scope so the compiling function can use it at each pass
        pns->nodes[3] = (mp_parse_node_t)s;
    }

    EMIT(load_build_class);

    // scope for this class
    scope_t *cscope = (scope_t*)pns->nodes[3];

    // compile the class
    close_over_variables_etc(comp, cscope, 0, 0);

    // get its name
    EMIT_ARG(load_const_str, cscope->simple_name);

    // nodes[1] has parent classes, if any
    // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
    mp_parse_node_t parents = pns->nodes[1];
    if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
        parents = MP_PARSE_NODE_NULL;
    }
    compile_trailer_paren_helper(comp, parents, false, 2);

    // return its name (the 'C' in class C(...):")
    return cscope->simple_name;
}

// returns true if it was a built-in decorator (even if the built-in had an error)
STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
    if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
        return false;
    }

    if (name_len != 2) {
        compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator");
        return true;
    }

    qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
    if (attr == MP_QSTR_bytecode) {
        *emit_options = MP_EMIT_OPT_BYTECODE;
#if MICROPY_EMIT_NATIVE
    } else if (attr == MP_QSTR_native) {
        *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
    } else if (attr == MP_QSTR_viper) {
        *emit_options = MP_EMIT_OPT_VIPER;
#endif
    #if MICROPY_EMIT_INLINE_ASM
    } else if (attr == ASM_DECORATOR_QSTR) {
        *emit_options = MP_EMIT_OPT_ASM;
    #endif
    } else {
        compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator");
    }

    return true;
}

STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // get the list of decorators
    mp_parse_node_t *nodes;
    int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);

    // inherit emit options for this function/class definition
    uint emit_options = comp->scope_cur->emit_options;

    // compile each decorator
    int num_built_in_decorators = 0;
    for (int i = 0; i < n; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
        mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i];

        // nodes[0] contains the decorator function, which is a dotted name
        mp_parse_node_t *name_nodes;
        int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);

        // check for built-in decorators
        if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
            // this was a built-in
            num_built_in_decorators += 1;

        } else {
            // not a built-in, compile normally

            // compile the decorator function
            compile_node(comp, name_nodes[0]);
            for (int j = 1; j < name_len; j++) {
                assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
                EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]));
            }

            // nodes[1] contains arguments to the decorator function, if any
            if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
                // call the decorator function with the arguments in nodes[1]
                compile_node(comp, pns_decorator->nodes[1]);
            }
        }
    }

    // compile the body (funcdef, async funcdef or classdef) and get its name
    mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1];
    qstr body_name = 0;
    if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
        body_name = compile_funcdef_helper(comp, pns_body, emit_options);
    #if MICROPY_PY_ASYNC_AWAIT
    } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
        assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
        mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns_body->nodes[0];
        body_name = compile_funcdef_helper(comp, pns0, emit_options);
        scope_t *fscope = (scope_t*)pns0->nodes[4];
        fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
    #endif
    } else {
        assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
        body_name = compile_classdef_helper(comp, pns_body, emit_options);
    }

    // call each decorator
    for (int i = 0; i < n - num_built_in_decorators; i++) {
        EMIT_ARG(call_function, 1, 0, 0);
    }

    // store func/class object into name
    compile_store_id(comp, body_name);
}

STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
    qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
    // store function object into function name
    compile_store_id(comp, fname);
}

STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
    if (MP_PARSE_NODE_IS_ID(pn)) {
        compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;

        compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node

        if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
            mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
                int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
                for (int i = 0; i < n - 1; i++) {
                    compile_node(comp, pns1->nodes[i]);
                }
                assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
                pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
            }
            if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
                compile_node(comp, pns1->nodes[0]);
                EMIT(delete_subscr);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
                assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
                EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
            } else {
                goto cannot_delete;
            }
        } else {
            goto cannot_delete;
        }

    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
        pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
        if (MP_PARSE_NODE_IS_NULL(pn)) {
            goto cannot_delete;
        } else {
            assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp

            if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
                mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
                if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) {
                    // sequence of one item, with trailing comma
                    assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0]));
                    c_del_stmt(comp, pns->nodes[0]);
                } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) {
                    // sequence of many items
                    int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
                    c_del_stmt(comp, pns->nodes[0]);
                    for (int i = 0; i < n; i++) {
                        c_del_stmt(comp, pns1->nodes[i]);
                    }
                } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) {
                    goto cannot_delete;
                } else {
                    // sequence with 2 items
                    goto sequence_with_2_items;
                }
            } else {
                // sequence with 2 items
                sequence_with_2_items:
                c_del_stmt(comp, pns->nodes[0]);
                c_del_stmt(comp, pns->nodes[1]);
            }
        }
    } else {
        // some arbitrary statement that we can't delete (eg del 1)
        goto cannot_delete;
    }

    return;

cannot_delete:
    compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression");
}

STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
}

STATIC void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->break_label == INVALID_LABEL) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'break' outside loop");
    }
    assert(comp->cur_except_level >= comp->break_continue_except_level);
    EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
}

STATIC void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->continue_label == INVALID_LABEL) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'continue' outside loop");
    }
    assert(comp->cur_except_level >= comp->break_continue_except_level);
    EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
}

STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->scope_cur->kind != SCOPE_FUNCTION) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function");
        return;
    }
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // no argument to 'return', so return None
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    } else if (MICROPY_COMP_RETURN_IF_EXPR
        && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
        // special case when returning an if-expression; to match CPython optimisation
        mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
        mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];

        uint l_fail = comp_next_label(comp);
        c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
        compile_node(comp, pns_test_if_expr->nodes[0]); // success value
        EMIT(return_value);
        EMIT_ARG(label_assign, l_fail);
        compile_node(comp, pns_test_if_else->nodes[1]); // failure value
    } else {
        compile_node(comp, pns->nodes[0]);
    }
    EMIT(return_value);
}

STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[0]);
    EMIT(pop_top);
}

STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // raise
        EMIT_ARG(raise_varargs, 0);
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
        // raise x from y
        pns = (mp_parse_node_struct_t*)pns->nodes[0];
        compile_node(comp, pns->nodes[0]);
        compile_node(comp, pns->nodes[1]);
        EMIT_ARG(raise_varargs, 2);
    } else {
        // raise x
        compile_node(comp, pns->nodes[0]);
        EMIT_ARG(raise_varargs, 1);
    }
}

// q_base holds the base of the name
// eg   a -> q_base=a
//      a.b.c -> q_base=a
STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
    bool is_as = false;
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        // a name of the form x as y; unwrap it
        *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
        pn = pns->nodes[0];
        is_as = true;
    }
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // empty name (eg, from . import x)
        *q_base = MP_QSTR_;
        EMIT_ARG(import_name, MP_QSTR_); // import the empty string
    } else if (MP_PARSE_NODE_IS_ID(pn)) {
        // just a simple name
        qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
        if (!is_as) {
            *q_base = q_full;
        }
        EMIT_ARG(import_name, q_full);
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        {
            // a name of the form a.b.c
            if (!is_as) {
                *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            }
            int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
            int len = n - 1;
            for (int i = 0; i < n; i++) {
                len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
            }
            char *q_ptr = mp_local_alloc(len);
            char *str_dest = q_ptr;
            for (int i = 0; i < n; i++) {
                if (i > 0) {
                    *str_dest++ = '.';
                }
                size_t str_src_len;
                const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
                memcpy(str_dest, str_src, str_src_len);
                str_dest += str_src_len;
            }
            qstr q_full = qstr_from_strn(q_ptr, len);
            mp_local_free(q_ptr);
            EMIT_ARG(import_name, q_full);
            if (is_as) {
                for (int i = 1; i < n; i++) {
                    EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
                }
            }
        }
    }
}

STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
    EMIT_ARG(load_const_small_int, 0); // level 0 import
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
    qstr q_base;
    do_import_name(comp, pn, &q_base);
    compile_store_id(comp, q_base);
}

STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
    apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
}

STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
    mp_parse_node_t pn_import_source = pns->nodes[0];

    // extract the preceding .'s (if any) for a relative import, to compute the import level
    uint import_level = 0;
    do {
        mp_parse_node_t pn_rel;
        if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
            // This covers relative imports with dots only like "from .. import"
            pn_rel = pn_import_source;
            pn_import_source = MP_PARSE_NODE_NULL;
        } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
            // This covers relative imports starting with dot(s) like "from .foo import"
            mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source;
            pn_rel = pns_2b->nodes[0];
            pn_import_source = pns_2b->nodes[1];
            assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
        } else {
            // Not a relative import
            break;
        }

        // get the list of . and/or ...'s
        mp_parse_node_t *nodes;
        int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);

        // count the total number of .'s
        for (int i = 0; i < n; i++) {
            if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
                import_level++;
            } else {
                // should be an MP_TOKEN_ELLIPSIS
                import_level += 3;
            }
        }
    } while (0);

    if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
        EMIT_ARG(load_const_small_int, import_level);

        // build the "fromlist" tuple
        EMIT_ARG(load_const_str, MP_QSTR__star_);
        EMIT_ARG(build_tuple, 1);

        // do the import
        qstr dummy_q;
        do_import_name(comp, pn_import_source, &dummy_q);
        EMIT(import_star);

    } else {
        EMIT_ARG(load_const_small_int, import_level);

        // build the "fromlist" tuple
        mp_parse_node_t *pn_nodes;
        int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
        for (int i = 0; i < n; i++) {
            assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
            mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
            qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
            EMIT_ARG(load_const_str, id2);
        }
        EMIT_ARG(build_tuple, n);

        // do the import
        qstr dummy_q;
        do_import_name(comp, pn_import_source, &dummy_q);
        for (int i = 0; i < n; i++) {
            assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
            mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
            qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
            EMIT_ARG(import_from, id2);
            if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
                compile_store_id(comp, id2);
            } else {
                compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
            }
        }
        EMIT(pop_top);
    }
}

STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
    bool added;
    id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
    if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
        compile_syntax_error(comp, pn, "identifier redefined as global");
        return;
    }
    id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;

    // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
    id_info = scope_find_global(comp->scope_cur, qst);
    if (id_info != NULL) {
        id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
    }
}

STATIC void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_parse_node_t *nodes;
        int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
        for (int i = 0; i < n; i++) {
            compile_declare_global(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
        }
    }
}

STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
    bool added;
    id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
    if (added) {
        scope_find_local_and_close_over(comp->scope_cur, id_info, qst);
        if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
            compile_syntax_error(comp, pn, "no binding for nonlocal found");
        }
    } else if (id_info->kind != ID_INFO_KIND_FREE) {
        compile_syntax_error(comp, pn, "identifier redefined as nonlocal");
    }
}

STATIC void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->pass == MP_PASS_SCOPE) {
        if (comp->scope_cur->kind == SCOPE_MODULE) {
            compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code");
            return;
        }
        mp_parse_node_t *nodes;
        int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
        for (int i = 0; i < n; i++) {
            compile_declare_nonlocal(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
        }
    }
}

STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // with optimisations enabled we don't compile assertions
    if (MP_STATE_VM(mp_optimise_value) != 0) {
        return;
    }

    uint l_end = comp_next_label(comp);
    c_if_cond(comp, pns->nodes[0], true, l_end);
    EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
    if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
        // assertion message
        compile_node(comp, pns->nodes[1]);
        EMIT_ARG(call_function, 1, 0, 0);
    }
    EMIT_ARG(raise_varargs, 1);
    EMIT_ARG(label_assign, l_end);
}

STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    uint l_end = comp_next_label(comp);

    // optimisation: don't emit anything when "if False"
    if (!mp_parse_node_is_const_false(pns->nodes[0])) {
        uint l_fail = comp_next_label(comp);
        c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition

        compile_node(comp, pns->nodes[1]); // if block

        // optimisation: skip everything else when "if True"
        if (mp_parse_node_is_const_true(pns->nodes[0])) {
            goto done;
        }

        if (
            // optimisation: don't jump over non-existent elif/else blocks
            !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
            // optimisation: don't jump if last instruction was return
            && !EMIT(last_emit_was_return_value)
            ) {
            // jump over elif/else blocks
            EMIT_ARG(jump, l_end);
        }

        EMIT_ARG(label_assign, l_fail);
    }

    // compile elif blocks (if any)
    mp_parse_node_t *pn_elif;
    int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
    for (int i = 0; i < n_elif; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
        mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i];

        // optimisation: don't emit anything when "if False"
        if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
            uint l_fail = comp_next_label(comp);
            c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition

            compile_node(comp, pns_elif->nodes[1]); // elif block

            // optimisation: skip everything else when "elif True"
            if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
                goto done;
            }

            // optimisation: don't jump if last instruction was return
            if (!EMIT(last_emit_was_return_value)) {
                EMIT_ARG(jump, l_end);
            }
            EMIT_ARG(label_assign, l_fail);
        }
    }

    // compile else block
    compile_node(comp, pns->nodes[3]); // can be null

done:
    EMIT_ARG(label_assign, l_end);
}

#define START_BREAK_CONTINUE_BLOCK \
    uint16_t old_break_label = comp->break_label; \
    uint16_t old_continue_label = comp->continue_label; \
    uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
    uint break_label = comp_next_label(comp); \
    uint continue_label = comp_next_label(comp); \
    comp->break_label = break_label; \
    comp->continue_label = continue_label; \
    comp->break_continue_except_level = comp->cur_except_level;

#define END_BREAK_CONTINUE_BLOCK \
    comp->break_label = old_break_label; \
    comp->continue_label = old_continue_label; \
    comp->break_continue_except_level = old_break_continue_except_level;

STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    START_BREAK_CONTINUE_BLOCK

    if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
        uint top_label = comp_next_label(comp);
        if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
            EMIT_ARG(jump, continue_label);
        }
        EMIT_ARG(label_assign, top_label);
        compile_node(comp, pns->nodes[1]); // body
        EMIT_ARG(label_assign, continue_label);
        c_if_cond(comp, pns->nodes[0], true, top_label); // condition
    }

    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    compile_node(comp, pns->nodes[2]); // else

    EMIT_ARG(label_assign, break_label);
}

// This function compiles an optimised for-loop of the form:
//      for <var> in range(<start>, <end>, <step>):
//          <body>
//      else:
//          <else>
// <var> must be an identifier and <step> must be a small-int.
//
// Semantics of for-loop require:
//  - final failing value should not be stored in the loop variable
//  - if the loop never runs, the loop variable should never be assigned
//  - assignments to <var>, <end> or <step> in the body do not alter the loop
//    (<step> is a constant for us, so no need to worry about it changing)
//
// If <end> is a small-int, then the stack during the for-loop contains just
// the current value of <var>.  Otherwise, the stack contains <end> then the
// current value of <var>.
STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
    START_BREAK_CONTINUE_BLOCK

    uint top_label = comp_next_label(comp);
    uint entry_label = comp_next_label(comp);

    // put the end value on the stack if it's not a small-int constant
    bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
    if (end_on_stack) {
        compile_node(comp, pn_end);
    }

    // compile: start
    compile_node(comp, pn_start);

    EMIT_ARG(jump, entry_label);
    EMIT_ARG(label_assign, top_label);

    // duplicate next value and store it to var
    EMIT(dup_top);
    c_assign(comp, pn_var, ASSIGN_STORE);

    // compile body
    compile_node(comp, pn_body);

    EMIT_ARG(label_assign, continue_label);

    // compile: var + step
    compile_node(comp, pn_step);
    EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);

    EMIT_ARG(label_assign, entry_label);

    // compile: if var <cond> end: goto top
    if (end_on_stack) {
        EMIT(dup_top_two);
        EMIT(rot_two);
    } else {
        EMIT(dup_top);
        compile_node(comp, pn_end);
    }
    assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
    if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
        EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
    } else {
        EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
    }
    EMIT_ARG(pop_jump_if, true, top_label);

    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    // Compile the else block.  We must pop the iterator variables before
    // executing the else code because it may contain break/continue statements.
    uint end_label = 0;
    if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
        // discard final value of "var", and possible "end" value
        EMIT(pop_top);
        if (end_on_stack) {
            EMIT(pop_top);
        }
        compile_node(comp, pn_else);
        end_label = comp_next_label(comp);
        EMIT_ARG(jump, end_label);
        EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
    }

    EMIT_ARG(label_assign, break_label);

    // discard final value of var that failed the loop condition
    EMIT(pop_top);

    // discard <end> value if it's on the stack
    if (end_on_stack) {
        EMIT(pop_top);
    }

    if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
        EMIT_ARG(label_assign, end_label);
    }
}

STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
    // this is actually slower, but uses no heap memory
    // for viper it will be much, much faster
    if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
        mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1];
        if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
            && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
            && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pns_it->nodes[1]) == PN_trailer_paren) {
            mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0];
            mp_parse_node_t *args;
            int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
            mp_parse_node_t pn_range_start;
            mp_parse_node_t pn_range_end;
            mp_parse_node_t pn_range_step;
            bool optimize = false;
            if (1 <= n_args && n_args <= 3) {
                optimize = true;
                if (n_args == 1) {
                    pn_range_start = mp_parse_node_new_small_int(0);
                    pn_range_end = args[0];
                    pn_range_step = mp_parse_node_new_small_int(1);
                } else if (n_args == 2) {
                    pn_range_start = args[0];
                    pn_range_end = args[1];
                    pn_range_step = mp_parse_node_new_small_int(1);
                } else {
                    pn_range_start = args[0];
                    pn_range_end = args[1];
                    pn_range_step = args[2];
                    // the step must be a non-zero constant integer to do the optimisation
                    if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)
                        || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) {
                        optimize = false;
                    }
                }
                // arguments must be able to be compiled as standard expressions
                if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
                    int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_start);
                    if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
                        optimize = false;
                    }
                }
                if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
                    int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_end);
                    if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
                        optimize = false;
                    }
                }
            }
            if (optimize) {
                compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
                return;
            }
        }
    }

    START_BREAK_CONTINUE_BLOCK
    comp->break_label |= MP_EMIT_BREAK_FROM_FOR;

    uint pop_label = comp_next_label(comp);

    compile_node(comp, pns->nodes[1]); // iterator
    EMIT_ARG(get_iter, true);
    EMIT_ARG(label_assign, continue_label);
    EMIT_ARG(for_iter, pop_label);
    c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
    compile_node(comp, pns->nodes[2]); // body
    if (!EMIT(last_emit_was_return_value)) {
        EMIT_ARG(jump, continue_label);
    }
    EMIT_ARG(label_assign, pop_label);
    EMIT(for_iter_end);

    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    compile_node(comp, pns->nodes[3]); // else (may be empty)

    EMIT_ARG(label_assign, break_label);
}

STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
    // setup code
    uint l1 = comp_next_label(comp);
    uint success_label = comp_next_label(comp);

    EMIT_ARG(setup_except, l1);
    compile_increase_except_level(comp);

    compile_node(comp, pn_body); // body
    EMIT(pop_block);
    EMIT_ARG(jump, success_label); // jump over exception handler

    EMIT_ARG(label_assign, l1); // start of exception handler
    EMIT(start_except_handler);

    // at this point the top of the stack contains the exception instance that was raised

    uint l2 = comp_next_label(comp);

    for (int i = 0; i < n_except; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
        mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i];

        qstr qstr_exception_local = 0;
        uint end_finally_label = comp_next_label(comp);

        if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
            // this is a catch all exception handler
            if (i + 1 != n_except) {
                compile_syntax_error(comp, pn_excepts[i], "default 'except' must be last");
                compile_decrease_except_level(comp);
                return;
            }
        } else {
            // this exception handler requires a match to a certain type of exception
            mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
            if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
                mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr;
                if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
                    // handler binds the exception to a local
                    pns_exception_expr = pns3->nodes[0];
                    qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
                }
            }
            EMIT(dup_top);
            compile_node(comp, pns_exception_expr);
            EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
            EMIT_ARG(pop_jump_if, false, end_finally_label);
        }

        // either discard or store the exception instance
        if (qstr_exception_local == 0) {
            EMIT(pop_top);
        } else {
            compile_store_id(comp, qstr_exception_local);
        }

        uint l3 = 0;
        if (qstr_exception_local != 0) {
            l3 = comp_next_label(comp);
            EMIT_ARG(setup_finally, l3);
            compile_increase_except_level(comp);
        }
        compile_node(comp, pns_except->nodes[1]);
        if (qstr_exception_local != 0) {
            EMIT(pop_block);
        }
        EMIT(pop_except);
        if (qstr_exception_local != 0) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            EMIT_ARG(label_assign, l3);
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            compile_store_id(comp, qstr_exception_local);
            compile_delete_id(comp, qstr_exception_local);

            compile_decrease_except_level(comp);
            EMIT(end_finally);
        }
        EMIT_ARG(jump, l2);
        EMIT_ARG(label_assign, end_finally_label);
        EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
    }

    compile_decrease_except_level(comp);
    EMIT(end_finally);
    EMIT(end_except_handler);

    EMIT_ARG(label_assign, success_label);
    compile_node(comp, pn_else); // else block, can be null
    EMIT_ARG(label_assign, l2);
}

STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
    uint l_finally_block = comp_next_label(comp);

    EMIT_ARG(setup_finally, l_finally_block);
    compile_increase_except_level(comp);

    if (n_except == 0) {
        assert(MP_PARSE_NODE_IS_NULL(pn_else));
        EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
        compile_node(comp, pn_body);
        EMIT_ARG(adjust_stack_size, -3);
    } else {
        compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
    }
    EMIT(pop_block);
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    EMIT_ARG(label_assign, l_finally_block);
    compile_node(comp, pn_finally);

    compile_decrease_except_level(comp);
    EMIT(end_finally);
}

STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
    {
        mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
        if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
            // just try-finally
            compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
            // try-except and possibly else and/or finally
            mp_parse_node_t *pn_excepts;
            int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
            if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
                // no finally
                compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
            } else {
                // have finally
                compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]);
            }
        } else {
            // just try-except
            mp_parse_node_t *pn_excepts;
            int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
            compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
        }
    }
}

STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
    if (n == 0) {
        // no more pre-bits, compile the body of the with
        compile_node(comp, body);
    } else {
        uint l_end = comp_next_label(comp);
        if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
            // we need to allocate an extra label for the native emitter
            // it will use l_end+1 as an auxiliary label
            comp_next_label(comp);
        }
        if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
            // this pre-bit is of the form "a as b"
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
            compile_node(comp, pns->nodes[0]);
            EMIT_ARG(setup_with, l_end);
            c_assign(comp, pns->nodes[1], ASSIGN_STORE);
        } else {
            // this pre-bit is just an expression
            compile_node(comp, nodes[0]);
            EMIT_ARG(setup_with, l_end);
            EMIT(pop_top);
        }
        compile_increase_except_level(comp);
        // compile additional pre-bits and the body
        compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
        // finish this with block
        EMIT_ARG(with_cleanup, l_end);
        compile_decrease_except_level(comp);
        EMIT(end_finally);
    }
}

STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
    mp_parse_node_t *nodes;
    int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
    assert(n > 0);

    // compile in a nested fashion
    compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}

STATIC void compile_yield_from(compiler_t *comp) {
    EMIT_ARG(get_iter, false);
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    EMIT(yield_from);
}

#if MICROPY_PY_ASYNC_AWAIT
STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
    EMIT_ARG(load_method, method, false);
    EMIT_ARG(call_method, 0, 0, 0);
    compile_yield_from(comp);
}

STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // comp->break_label |= MP_EMIT_BREAK_FROM_FOR;

    qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
    uint while_else_label = comp_next_label(comp);
    uint try_exception_label = comp_next_label(comp);
    uint try_else_label = comp_next_label(comp);
    uint try_finally_label = comp_next_label(comp);

    compile_node(comp, pns->nodes[1]); // iterator
    compile_await_object_method(comp, MP_QSTR___aiter__);
    compile_store_id(comp, context);

    START_BREAK_CONTINUE_BLOCK

    EMIT_ARG(label_assign, continue_label);

    EMIT_ARG(setup_except, try_exception_label);
    compile_increase_except_level(comp);

    compile_load_id(comp, context);
    compile_await_object_method(comp, MP_QSTR___anext__);
    c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
    EMIT(pop_block);
    EMIT_ARG(jump, try_else_label);

    EMIT_ARG(label_assign, try_exception_label);
    EMIT(start_except_handler);
    EMIT(dup_top);
    EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
    EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
    EMIT_ARG(pop_jump_if, false, try_finally_label);
    EMIT(pop_top); // pop exception instance
    EMIT(pop_except);
    EMIT_ARG(jump, while_else_label);

    EMIT_ARG(label_assign, try_finally_label);
    EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
    compile_decrease_except_level(comp);
    EMIT(end_finally);
    EMIT(end_except_handler);

    EMIT_ARG(label_assign, try_else_label);
    compile_node(comp, pns->nodes[2]); // body

    EMIT_ARG(jump, continue_label);
    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    EMIT_ARG(label_assign, while_else_label);
    compile_node(comp, pns->nodes[3]); // else

    EMIT_ARG(label_assign, break_label);
}

STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
    if (n == 0) {
        // no more pre-bits, compile the body of the with
        compile_node(comp, body);
    } else {
        uint try_exception_label = comp_next_label(comp);
        uint no_reraise_label = comp_next_label(comp);
        uint try_else_label = comp_next_label(comp);
        uint end_label = comp_next_label(comp);
        qstr context;

        if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
            // this pre-bit is of the form "a as b"
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
            compile_node(comp, pns->nodes[0]);
            context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            compile_store_id(comp, context);
            compile_load_id(comp, context);
            compile_await_object_method(comp, MP_QSTR___aenter__);
            c_assign(comp, pns->nodes[1], ASSIGN_STORE);
        } else {
            // this pre-bit is just an expression
            compile_node(comp, nodes[0]);
            context = MP_PARSE_NODE_LEAF_ARG(nodes[0]);
            compile_store_id(comp, context);
            compile_load_id(comp, context);
            compile_await_object_method(comp, MP_QSTR___aenter__);
            EMIT(pop_top);
        }

        compile_load_id(comp, context);
        EMIT_ARG(load_method, MP_QSTR___aexit__, false);

        EMIT_ARG(setup_except, try_exception_label);
        compile_increase_except_level(comp);
        // compile additional pre-bits and the body
        compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
        // finish this with block
        EMIT(pop_block);
        EMIT_ARG(jump, try_else_label); // jump over exception handler

        EMIT_ARG(label_assign, try_exception_label); // start of exception handler
        EMIT(start_except_handler);

        // at this point the stack contains: ..., __aexit__, self, exc
        EMIT(dup_top);
        #if MICROPY_CPYTHON_COMPAT
        EMIT_ARG(load_attr, MP_QSTR___class__); // get type(exc)
        #else
        compile_load_id(comp, MP_QSTR_type);
        EMIT(rot_two);
        EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
        #endif
        EMIT(rot_two);
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
        // at this point the stack contains: ..., __aexit__, self, type(exc), exc, None
        EMIT_ARG(call_method, 3, 0, 0);

        compile_yield_from(comp);
        EMIT_ARG(pop_jump_if, true, no_reraise_label);
        EMIT_ARG(raise_varargs, 0);

        EMIT_ARG(label_assign, no_reraise_label);
        EMIT(pop_except);
        EMIT_ARG(jump, end_label);

        EMIT_ARG(adjust_stack_size, 3); // adjust for __aexit__, self, exc
        compile_decrease_except_level(comp);
        EMIT(end_finally);
        EMIT(end_except_handler);

        EMIT_ARG(label_assign, try_else_label); // start of try-else handler
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT(dup_top);
        EMIT(dup_top);
        EMIT_ARG(call_method, 3, 0, 0);
        compile_yield_from(comp);
        EMIT(pop_top);

        EMIT_ARG(label_assign, end_label);

    }
}

STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
    mp_parse_node_t *nodes;
    int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
    assert(n > 0);

    // compile in a nested fashion
    compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}

STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
    mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
    if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
        // async def
        compile_funcdef(comp, pns0);
        scope_t *fscope = (scope_t*)pns0->nodes[4];
        fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
    } else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
        // async for
        compile_async_for_stmt(comp, pns0);
    } else {
        // async with
        assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
        compile_async_with_stmt(comp, pns0);
    }
}
#endif

STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
        if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
            // for REPL, evaluate then print the expression
            compile_load_id(comp, MP_QSTR___repl_print__);
            compile_node(comp, pns->nodes[0]);
            EMIT_ARG(call_function, 1, 0, 0);
            EMIT(pop_top);

        } else {
            // for non-REPL, evaluate then discard the expression
            if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
                || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
                // do nothing with a lonely constant
            } else {
                compile_node(comp, pns->nodes[0]); // just an expression
                EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
            }
        }
    } else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
        mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
        int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
        if (kind == PN_expr_stmt_augassign) {
            c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
            compile_node(comp, pns1->nodes[1]); // rhs
            assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
            mp_binary_op_t op;
            switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) {
                case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
                case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
                case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
                case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
                case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
                case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
                case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
                case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
                case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
                case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
                case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
                case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
            }
            EMIT_ARG(binary_op, op);
            c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
        } else if (kind == PN_expr_stmt_assign_list) {
            int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
            compile_node(comp, pns1->nodes[rhs]); // rhs
            // following CPython, we store left-most first
            if (rhs > 0) {
                EMIT(dup_top);
            }
            c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
            for (int i = 0; i < rhs; i++) {
                if (i + 1 < rhs) {
                    EMIT(dup_top);
                }
                c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
            }
        } else {
        plain_assign:
            #if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
            if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr)
                && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) {
                mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
                pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
                uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0);
                // Can only optimise a tuple-to-tuple assignment when all of the following hold:
                //  - equal number of items in LHS and RHS tuples
                //  - 2 or 3 items in the tuples
                //  - there are no star expressions in the LHS tuple
                if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1)
                    && (n_pns0 == 2
                        #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                        || n_pns0 == 3
                        #endif
                        )
                    && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
                    && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
                    #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                    && (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr))
                    #endif
                    ) {
                    // Optimisation for a, b = c, d or a, b, c = d, e, f
                    compile_node(comp, pns1->nodes[0]); // rhs
                    compile_node(comp, pns1->nodes[1]); // rhs
                    #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                    if (n_pns0 == 3) {
                        compile_node(comp, pns1->nodes[2]); // rhs
                        EMIT(rot_three);
                    }
                    #endif
                    EMIT(rot_two);
                    c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
                    c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
                    #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                    if (n_pns0 == 3) {
                        c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
                    }
                    #endif
                    return;
                }
            }
            #endif

            compile_node(comp, pns->nodes[1]); // rhs
            c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
        }
    } else {
        goto plain_assign;
    }
}

STATIC void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, mp_binary_op_t binary_op) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    compile_node(comp, pns->nodes[0]);
    for (int i = 1; i < num_nodes; i += 1) {
        compile_node(comp, pns->nodes[i]);
        EMIT_ARG(binary_op, binary_op);
    }
}

STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
    mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1];

    uint l_fail = comp_next_label(comp);
    uint l_end = comp_next_label(comp);
    c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
    compile_node(comp, pns->nodes[0]); // success value
    EMIT_ARG(jump, l_end);
    EMIT_ARG(label_assign, l_fail);
    EMIT_ARG(adjust_stack_size, -1); // adjust stack size
    compile_node(comp, pns_test_if_else->nodes[1]); // failure value
    EMIT_ARG(label_assign, l_end);
}

STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this lambda
        scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
        // store the lambda scope so the compiling function (this one) can use it at each pass
        pns->nodes[2] = (mp_parse_node_t)s;
    }

    // get the scope for this lambda
    scope_t *this_scope = (scope_t*)pns->nodes[2];

    // compile the lambda definition
    compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
}

STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns, bool cond) {
    uint l_end = comp_next_label(comp);
    int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    for (int i = 0; i < n; i += 1) {
        compile_node(comp, pns->nodes[i]);
        if (i + 1 < n) {
            EMIT_ARG(jump_if_or_pop, cond, l_end);
        }
    }
    EMIT_ARG(label_assign, l_end);
}

STATIC void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_or_and_test(comp, pns, true);
}

STATIC void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_or_and_test(comp, pns, false);
}

STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[0]);
    EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
}

STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    compile_node(comp, pns->nodes[0]);
    bool multi = (num_nodes > 3);
    uint l_fail = 0;
    if (multi) {
        l_fail = comp_next_label(comp);
    }
    for (int i = 1; i + 1 < num_nodes; i += 2) {
        compile_node(comp, pns->nodes[i + 1]);
        if (i + 2 < num_nodes) {
            EMIT(dup_top);
            EMIT(rot_three);
        }
        if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
            mp_binary_op_t op;
            switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) {
                case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
                case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
                case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
                case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
                case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
                case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
                case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
            }
            EMIT_ARG(binary_op, op);
        } else {
            assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
            mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i];
            int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
            if (kind == PN_comp_op_not_in) {
                EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
            } else {
                assert(kind == PN_comp_op_is); // should be
                if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
                    EMIT_ARG(binary_op, MP_BINARY_OP_IS);
                } else {
                    EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
                }
            }
        }
        if (i + 2 < num_nodes) {
            EMIT_ARG(jump_if_or_pop, false, l_fail);
        }
    }
    if (multi) {
        uint l_end = comp_next_label(comp);
        EMIT_ARG(jump, l_end);
        EMIT_ARG(label_assign, l_fail);
        EMIT_ARG(adjust_stack_size, 1);
        EMIT(rot_two);
        EMIT(pop_top);
        EMIT_ARG(label_assign, l_end);
    }
}

STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target");
}

STATIC void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    c_binary_op(comp, pns, MP_BINARY_OP_OR);
}

STATIC void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    c_binary_op(comp, pns, MP_BINARY_OP_XOR);
}

STATIC void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    c_binary_op(comp, pns, MP_BINARY_OP_AND);
}

STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    compile_node(comp, pns->nodes[0]);
    for (int i = 1; i + 1 < num_nodes; i += 2) {
        compile_node(comp, pns->nodes[i + 1]);
        mp_binary_op_t op;
        mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
        switch (tok) {
            case MP_TOKEN_OP_PLUS:      op = MP_BINARY_OP_ADD; break;
            case MP_TOKEN_OP_MINUS:     op = MP_BINARY_OP_SUBTRACT; break;
            case MP_TOKEN_OP_STAR:      op = MP_BINARY_OP_MULTIPLY; break;
            case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break;
            case MP_TOKEN_OP_SLASH:     op = MP_BINARY_OP_TRUE_DIVIDE; break;
            case MP_TOKEN_OP_PERCENT:   op = MP_BINARY_OP_MODULO; break;
            case MP_TOKEN_OP_DBL_LESS:  op = MP_BINARY_OP_LSHIFT; break;
            default:
                assert(tok == MP_TOKEN_OP_DBL_MORE);
                op = MP_BINARY_OP_RSHIFT;
                break;
        }
        EMIT_ARG(binary_op, op);
    }
}

STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[1]);
    mp_unary_op_t op;
    mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
    switch (tok) {
        case MP_TOKEN_OP_PLUS:  op = MP_UNARY_OP_POSITIVE; break;
        case MP_TOKEN_OP_MINUS: op = MP_UNARY_OP_NEGATIVE; break;
        default:
            assert(tok == MP_TOKEN_OP_TILDE);
            op = MP_UNARY_OP_INVERT;
            break;
    }
    EMIT_ARG(unary_op, op);
}

STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // compile the subject of the expression
    compile_node(comp, pns->nodes[0]);

    // compile_atom_expr_await may call us with a NULL node
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
        return;
    }

    // get the array of trailers (known to be an array of PARSE_NODE_STRUCT)
    size_t num_trail = 1;
    mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t**)&pns->nodes[1];
    if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) {
        num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]);
        pns_trail = (mp_parse_node_struct_t**)&pns_trail[0]->nodes[0];
    }

    // the current index into the array of trailers
    size_t i = 0;

    // handle special super() call
    if (comp->scope_cur->kind == SCOPE_FUNCTION
        && MP_PARSE_NODE_IS_ID(pns->nodes[0])
        && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super
        && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
        && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) {
        // at this point we have matched "super()" within a function

        // load the class for super to search for a parent
        compile_load_id(comp, MP_QSTR___class__);

        // look for first argument to function (assumes it's "self")
        bool found = false;
        id_info_t *id = &comp->scope_cur->id_info[0];
        for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
            if (id->flags & ID_FLAG_IS_PARAM) {
                // first argument found; load it
                compile_load_id(comp, id->qst);
                found = true;
                break;
            }
        }
        if (!found) {
            compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0],
                "super() can't find self"); // really a TypeError
            return;
        }

        if (num_trail >= 3
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) {
            // optimisation for method calls super().f(...), to eliminate heap allocation
            mp_parse_node_struct_t *pns_period = pns_trail[1];
            mp_parse_node_struct_t *pns_paren = pns_trail[2];
            EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true);
            compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
            i = 3;
        } else {
            // a super() call
            EMIT_ARG(call_function, 2, 0, 0);
            i = 1;
        }
    }

    // compile the remaining trailers
    for (; i < num_trail; i++) {
        if (i + 1 < num_trail
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) {
            // optimisation for method calls a.f(...), following PyPy
            mp_parse_node_struct_t *pns_period = pns_trail[i];
            mp_parse_node_struct_t *pns_paren = pns_trail[i + 1];
            EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false);
            compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
            i += 1;
        } else {
            // node is one of: trailer_paren, trailer_bracket, trailer_period
            compile_node(comp, (mp_parse_node_t)pns_trail[i]);
        }
    }
}

STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
    EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
}

STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
    // function to call is on top of stack

    // get the list of arguments
    mp_parse_node_t *args;
    int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);

    // compile the arguments
    // Rather than calling compile_node on the list, we go through the list of args
    // explicitly here so that we can count the number of arguments and give sensible
    // error messages.
    int n_positional = n_positional_extra;
    uint n_keyword = 0;
    uint star_flags = 0;
    mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL;
    for (int i = 0; i < n_args; i++) {
        if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
            mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i];
            if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
                if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
                    compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x");
                    return;
                }
                star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
                star_args_node = pns_arg;
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
                if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
                    compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x");
                    return;
                }
                star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
                dblstar_args_node = pns_arg;
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
                if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
                    if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
                        compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id");
                        return;
                    }
                    EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
                    compile_node(comp, pns_arg->nodes[1]);
                    n_keyword += 1;
                } else {
                    compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
                    n_positional++;
                }
            } else {
                goto normal_argument;
            }
        } else {
            normal_argument:
            if (star_flags) {
                compile_syntax_error(comp, args[i], "non-keyword arg after */**");
                return;
            }
            if (n_keyword > 0) {
                compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg");
                return;
            }
            compile_node(comp, args[i]);
            n_positional++;
        }
    }

    // compile the star/double-star arguments if we had them
    // if we had one but not the other then we load "null" as a place holder
    if (star_flags != 0) {
        if (star_args_node == NULL) {
            EMIT(load_null);
        } else {
            compile_node(comp, star_args_node->nodes[0]);
        }
        if (dblstar_args_node == NULL) {
            EMIT(load_null);
        } else {
            compile_node(comp, dblstar_args_node->nodes[0]);
        }
    }

    // emit the function/method call
    if (is_method_call) {
        EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
    } else {
        EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
    }
}

// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
    assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
    assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
    mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];

    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this comprehension
        scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
        // store the comprehension scope so the compiling function (this one) can use it at each pass
        pns_comp_for->nodes[3] = (mp_parse_node_t)s;
    }

    // get the scope for this comprehension
    scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3];

    // compile the comprehension
    close_over_variables_etc(comp, this_scope, 0, 0);

    compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
    if (kind == SCOPE_GEN_EXPR) {
        EMIT_ARG(get_iter, false);
    }
    EMIT_ARG(call_function, 1, 0, 0);
}

STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // an empty tuple
        c_tuple(comp, MP_PARSE_NODE_NULL, NULL);
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
        pns = (mp_parse_node_struct_t*)pns->nodes[0];
        assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1]));
        if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
            mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
                // tuple of one item, with trailing comma
                assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
                c_tuple(comp, pns->nodes[0], NULL);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
                // tuple of many items
                c_tuple(comp, pns->nodes[0], pns2);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
                // generator expression
                compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
            } else {
                // tuple with 2 items
                goto tuple_with_2_items;
            }
        } else {
            // tuple with 2 items
            tuple_with_2_items:
            c_tuple(comp, MP_PARSE_NODE_NULL, pns);
        }
    }
}

STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // empty list
        EMIT_ARG(build_list, 0);
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
        mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0];
        if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) {
            mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) {
                // list of one item, with trailing comma
                assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0]));
                compile_node(comp, pns2->nodes[0]);
                EMIT_ARG(build_list, 1);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) {
                // list of many items
                compile_node(comp, pns2->nodes[0]);
                compile_generic_all_nodes(comp, pns3);
                EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3));
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) {
                // list comprehension
                compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
            } else {
                // list with 2 items
                goto list_with_2_items;
            }
        } else {
            // list with 2 items
            list_with_2_items:
            compile_node(comp, pns2->nodes[0]);
            compile_node(comp, pns2->nodes[1]);
            EMIT_ARG(build_list, 2);
        }
    } else {
        // list with 1 item
        compile_node(comp, pns->nodes[0]);
        EMIT_ARG(build_list, 1);
    }
}

STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
    mp_parse_node_t pn = pns->nodes[0];
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // empty dict
        EMIT_ARG(build_map, 0);
    } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
            // dict with one element
            EMIT_ARG(build_map, 1);
            compile_node(comp, pn);
            EMIT(store_map);
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
            assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
            mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
                // dict/set with multiple elements

                // get tail elements (2nd, 3rd, ...)
                mp_parse_node_t *nodes;
                int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);

                // first element sets whether it's a dict or set
                bool is_dict;
                if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
                    // a dictionary
                    EMIT_ARG(build_map, 1 + n);
                    compile_node(comp, pns->nodes[0]);
                    EMIT(store_map);
                    is_dict = true;
                } else {
                    // a set
                    compile_node(comp, pns->nodes[0]); // 1st value of set
                    is_dict = false;
                }

                // process rest of elements
                for (int i = 0; i < n; i++) {
                    mp_parse_node_t pn_i = nodes[i];
                    bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
                    compile_node(comp, pn_i);
                    if (is_dict) {
                        if (!is_key_value) {
                            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax");
                            } else {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dict");
                            }
                            return;
                        }
                        EMIT(store_map);
                    } else {
                        if (is_key_value) {
                            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax");
                            } else {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set");
                            }
                            return;
                        }
                    }
                }

                #if MICROPY_PY_BUILTINS_SET
                // if it's a set, build it
                if (!is_dict) {
                    EMIT_ARG(build_set, 1 + n);
                }
                #endif
            } else {
                assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
                // dict/set comprehension
                if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
                    // a dictionary comprehension
                    compile_comprehension(comp, pns, SCOPE_DICT_COMP);
                } else {
                    // a set comprehension
                    compile_comprehension(comp, pns, SCOPE_SET_COMP);
                }
            }
        } else {
            // set with one element
            goto set_with_one_element;
        }
    } else {
        // set with one element
        set_with_one_element:
        #if MICROPY_PY_BUILTINS_SET
        compile_node(comp, pn);
        EMIT_ARG(build_set, 1);
        #else
        assert(0);
        #endif
    }
}

STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
}

STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // object who's index we want is on top of stack
    compile_node(comp, pns->nodes[0]); // the index
    EMIT(load_subscr);
}

STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // object who's attribute we want is on top of stack
    EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get
}

#if MICROPY_PY_BUILTINS_SLICE
STATIC void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
    mp_parse_node_t pn = pns->nodes[0];
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // [?:]
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT_ARG(build_slice, 2);
    } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            pn = pns->nodes[0];
            if (MP_PARSE_NODE_IS_NULL(pn)) {
                // [?::]
                EMIT_ARG(build_slice, 2);
            } else {
                // [?::x]
                compile_node(comp, pn);
                EMIT_ARG(build_slice, 3);
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
            compile_node(comp, pns->nodes[0]);
            assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
            pns = (mp_parse_node_struct_t*)pns->nodes[1];
            assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
            if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                // [?:x:]
                EMIT_ARG(build_slice, 2);
            } else {
                // [?:x:x]
                compile_node(comp, pns->nodes[0]);
                EMIT_ARG(build_slice, 3);
            }
        } else {
            // [?:x]
            compile_node(comp, pn);
            EMIT_ARG(build_slice, 2);
        }
    } else {
        // [?:x]
        compile_node(comp, pn);
        EMIT_ARG(build_slice, 2);
    }
}

STATIC void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[0]); // start of slice
    assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
    compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]);
}

STATIC void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) {
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    compile_subscript_3_helper(comp, pns);
}
#endif // MICROPY_PY_BUILTINS_SLICE

STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // if this is called then we are compiling a dict key:value pair
    compile_node(comp, pns->nodes[1]); // value
    compile_node(comp, pns->nodes[0]); // key
}

STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
    qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
    // store class object into class name
    compile_store_id(comp, cname);
}

STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function");
        return;
    }
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT(yield_value);
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
        pns = (mp_parse_node_struct_t*)pns->nodes[0];
        compile_node(comp, pns->nodes[0]);
        compile_yield_from(comp);
    } else {
        compile_node(comp, pns->nodes[0]);
        EMIT(yield_value);
    }
}

#if MICROPY_PY_ASYNC_AWAIT
STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'await' outside function");
        return;
    }
    compile_atom_expr_normal(comp, pns);
    compile_yield_from(comp);
}
#endif

STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
    #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
    // nodes are 32-bit pointers, but need to extract 64-bit object
    return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
    #else
    return (mp_obj_t)pns->nodes[0];
    #endif
}

STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
    EMIT_ARG(load_const_obj, get_const_object(pns));
}

typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*);
STATIC const compile_function_t compile_function[] = {
// only define rules with a compile function
#define c(f) compile_##f
#define DEF_RULE(rule, comp, kind, ...) comp,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef c
#undef DEF_RULE
#undef DEF_RULE_NC
    compile_const_object,
};

STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // pass
    } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
        mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
        #if MICROPY_DYNAMIC_COMPILER
        mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1));
        if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
            // integer fits in target runtime's small-int
            EMIT_ARG(load_const_small_int, arg);
        } else {
            // integer doesn't fit, so create a multi-precision int object
            // (but only create the actual object on the last pass)
            if (comp->pass != MP_PASS_EMIT) {
                EMIT_ARG(load_const_obj, mp_const_none);
            } else {
                EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
            }
        }
        #else
        EMIT_ARG(load_const_small_int, arg);
        #endif
    } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
        uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
        switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
            case MP_PARSE_NODE_ID: compile_load_id(comp, arg); break;
            case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg); break;
            case MP_PARSE_NODE_BYTES:
                // only create and load the actual bytes object on the last pass
                if (comp->pass != MP_PASS_EMIT) {
                    EMIT_ARG(load_const_obj, mp_const_none);
                } else {
                    size_t len;
                    const byte *data = qstr_data(arg, &len);
                    EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
                }
                break;
            case MP_PARSE_NODE_TOKEN: default:
                if (arg == MP_TOKEN_NEWLINE) {
                    // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
                    // or when single_input lets through a NEWLINE (user enters a blank line)
                    // do nothing
                } else {
                  EMIT_ARG(load_const_tok, arg);
                }
                break;
        }
    } else {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        EMIT_ARG(set_source_line, pns->source_line);
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object);
        compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
        f(comp, pns);
    }
}

STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
    // check that **kw is last
    if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
        compile_syntax_error(comp, pn, "invalid syntax");
        return;
    }

    qstr param_name = MP_QSTR_NULL;
    uint param_flag = ID_FLAG_IS_PARAM;
    if (MP_PARSE_NODE_IS_ID(pn)) {
        param_name = MP_PARSE_NODE_LEAF_ARG(pn);
        if (comp->have_star) {
            // comes after a star, so counts as a keyword-only parameter
            comp->scope_cur->num_kwonly_args += 1;
        } else {
            // comes before a star, so counts as a positional parameter
            comp->scope_cur->num_pos_args += 1;
        }
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT(pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
            param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            if (comp->have_star) {
                // comes after a star, so counts as a keyword-only parameter
                comp->scope_cur->num_kwonly_args += 1;
            } else {
                // comes before a star, so counts as a positional parameter
                comp->scope_cur->num_pos_args += 1;
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
            if (comp->have_star) {
                // more than one star
                compile_syntax_error(comp, pn, "invalid syntax");
                return;
            }
            comp->have_star = true;
            param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
            if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                // bare star
                // TODO see http://www.python.org/dev/peps/pep-3102/
                //assert(comp->scope_cur->num_dict_params == 0);
            } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
                // named star
                comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
                param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            } else {
                assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
                // named star with possible annotation
                comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
                pns = (mp_parse_node_struct_t*)pns->nodes[0];
                param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            }
        } else {
            assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
            param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
            comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
        }
    }

    if (param_name != MP_QSTR_NULL) {
        bool added;
        id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
        if (!added) {
            compile_syntax_error(comp, pn, "name reused for argument");
            return;
        }
        id_info->kind = ID_INFO_KIND_LOCAL;
        id_info->flags = param_flag;
    }
}

STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
    compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
}

STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
    compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
}

#if MICROPY_EMIT_NATIVE
STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) {
    if (!MP_PARSE_NODE_IS_STRUCT(pn)) {
        // no annotation
        return;
    }

    mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
    if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) {
        // named parameter with possible annotation
        // fallthrough
    } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) {
        if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) {
            // named star with possible annotation
            pns = (mp_parse_node_struct_t*)pns->nodes[0];
            // fallthrough
        } else {
            // no annotation
            return;
        }
    } else {
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star);
        // double star with possible annotation
        // fallthrough
    }

    mp_parse_node_t pn_annotation = pns->nodes[1];

    if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
        qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
        id_info_t *id_info = scope_find(comp->scope_cur, param_name);
        assert(id_info != NULL);

        if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
            qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
            EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
        } else {
            compile_syntax_error(comp, pn_annotation, "parameter annotation must be an identifier");
        }
    }
}
#endif // MICROPY_EMIT_NATIVE

STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
    uint l_top = comp_next_label(comp);
    uint l_end = comp_next_label(comp);
    EMIT_ARG(label_assign, l_top);
    EMIT_ARG(for_iter, l_end);
    c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
    mp_parse_node_t pn_iter = pns_comp_for->nodes[2];

    tail_recursion:
    if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
        // no more nested if/for; compile inner expression
        compile_node(comp, pn_inner_expr);
        if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
            EMIT(yield_value);
            EMIT(pop_top);
        } else {
            EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
        }
    } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_if) {
        // if condition
        mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter;
        c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
        pn_iter = pns_comp_if->nodes[1];
        goto tail_recursion;
    } else {
        assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_for); // should be
        // for loop
        mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter;
        compile_node(comp, pns_comp_for2->nodes[1]);
        EMIT_ARG(get_iter, true);
        compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
    }

    EMIT_ARG(jump, l_top);
    EMIT_ARG(label_assign, l_end);
    EMIT(for_iter_end);
}

STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
#if MICROPY_ENABLE_DOC_STRING
    // see http://www.python.org/dev/peps/pep-0257/

    // look for the first statement
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
        // a statement; fall through
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
        // file input; find the first non-newline node
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        for (int i = 0; i < num_nodes; i++) {
            pn = pns->nodes[i];
            if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
                // not a newline, so this is the first statement; finish search
                break;
            }
        }
        // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
        // a list of statements; get the first one
        pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
    } else {
        return;
    }

    // check the first statement for a doc string
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
                && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
            || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)
                && MP_OBJ_IS_STR(get_const_object((mp_parse_node_struct_t*)pns->nodes[0])))) {
                // compile the doc string
                compile_node(comp, pns->nodes[0]);
                // store the doc string
                compile_store_id(comp, MP_QSTR___doc__);
        }
    }
#else
    (void)comp;
    (void)pn;
#endif
}

STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
    comp->pass = pass;
    comp->scope_cur = scope;
    comp->next_label = 0;
    EMIT_ARG(start_pass, pass, scope);

    if (comp->pass == MP_PASS_SCOPE) {
        // reset maximum stack sizes in scope
        // they will be computed in this first pass
        scope->stack_size = 0;
        scope->exc_stack_size = 0;
    }

    // compile
    if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
        assert(scope->kind == SCOPE_MODULE);
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        compile_node(comp, pns->nodes[0]); // compile the expression
        EMIT(return_value);
    } else if (scope->kind == SCOPE_MODULE) {
        if (!comp->is_repl) {
            check_for_doc_string(comp, scope->pn);
        }
        compile_node(comp, scope->pn);
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT(return_value);
    } else if (scope->kind == SCOPE_FUNCTION) {
        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);

        // work out number of parameters, keywords and default parameters, and add them to the id_info array
        // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
        if (comp->pass == MP_PASS_SCOPE) {
            comp->have_star = false;
            apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
        }
        #if MICROPY_EMIT_NATIVE
        else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
            // compile annotations; only needed on latter compiler passes
            // only needed for viper emitter

            // argument annotations
            apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations);

            // pns->nodes[2] is return/whole function annotation
            mp_parse_node_t pn_annotation = pns->nodes[2];
            if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
                // nodes[2] can be null or a test-expr
                if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
                    qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
                    EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
                } else {
                    compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
                }
            }
        }
        #endif // MICROPY_EMIT_NATIVE

        compile_node(comp, pns->nodes[3]); // 3 is function body
        // emit return if it wasn't the last opcode
        if (!EMIT(last_emit_was_return_value)) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            EMIT(return_value);
        }
    } else if (scope->kind == SCOPE_LAMBDA) {
        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);

        // work out number of parameters, keywords and default parameters, and add them to the id_info array
        // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
        if (comp->pass == MP_PASS_SCOPE) {
            comp->have_star = false;
            apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
        }

        compile_node(comp, pns->nodes[1]); // 1 is lambda body

        // if the lambda is a generator, then we return None, not the result of the expression of the lambda
        if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
            EMIT(pop_top);
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        }
        EMIT(return_value);
    } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
        // a bit of a hack at the moment

        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
        mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];

        // We need a unique name for the comprehension argument (the iterator).
        // CPython uses .0, but we should be able to use anything that won't
        // clash with a user defined variable.  Best to use an existing qstr,
        // so we use the blank qstr.
        qstr qstr_arg = MP_QSTR_;
        if (comp->pass == MP_PASS_SCOPE) {
            bool added;
            id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
            assert(added);
            id_info->kind = ID_INFO_KIND_LOCAL;
            scope->num_pos_args = 1;
        }

        if (scope->kind == SCOPE_LIST_COMP) {
            EMIT_ARG(build_list, 0);
        } else if (scope->kind == SCOPE_DICT_COMP) {
            EMIT_ARG(build_map, 0);
        #if MICROPY_PY_BUILTINS_SET
        } else if (scope->kind == SCOPE_SET_COMP) {
            EMIT_ARG(build_set, 0);
        #endif
        }

        // There are 4 slots on the stack for the iterator, and the first one is
        // NULL to indicate that the second one points to the iterator object.
        if (scope->kind == SCOPE_GEN_EXPR) {
            // TODO static assert that MP_OBJ_ITER_BUF_NSLOTS == 4
            EMIT(load_null);
            compile_load_id(comp, qstr_arg);
            EMIT(load_null);
            EMIT(load_null);
        } else {
            compile_load_id(comp, qstr_arg);
            EMIT_ARG(get_iter, true);
        }

        compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);

        if (scope->kind == SCOPE_GEN_EXPR) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        }
        EMIT(return_value);
    } else {
        assert(scope->kind == SCOPE_CLASS);
        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);

        if (comp->pass == MP_PASS_SCOPE) {
            bool added;
            id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
            assert(added);
            id_info->kind = ID_INFO_KIND_LOCAL;
        }

        compile_load_id(comp, MP_QSTR___name__);
        compile_store_id(comp, MP_QSTR___module__);
        EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
        compile_store_id(comp, MP_QSTR___qualname__);

        check_for_doc_string(comp, pns->nodes[2]);
        compile_node(comp, pns->nodes[2]); // 2 is class body

        id_info_t *id = scope_find(scope, MP_QSTR___class__);
        assert(id != NULL);
        if (id->kind == ID_INFO_KIND_LOCAL) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        } else {
            EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
        }
        EMIT(return_value);
    }

    EMIT(end_pass);

    // make sure we match all the exception levels
    assert(comp->cur_except_level == 0);
}

#if MICROPY_EMIT_INLINE_ASM
// requires 3 passes: SCOPE, CODE_SIZE, EMIT
STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
    comp->pass = pass;
    comp->scope_cur = scope;
    comp->next_label = 0;

    if (scope->kind != SCOPE_FUNCTION) {
        compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function");
        return;
    }

    if (comp->pass > MP_PASS_SCOPE) {
        EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
    }

    // get the function definition parse node
    assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
    mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
    assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);

    //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name

    // parameters are in pns->nodes[1]
    if (comp->pass == MP_PASS_CODE_SIZE) {
        mp_parse_node_t *pn_params;
        int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
        scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
        if (comp->compile_error != MP_OBJ_NULL) {
            goto inline_asm_error;
        }
    }

    // pns->nodes[2] is function return annotation
    mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
    mp_parse_node_t pn_annotation = pns->nodes[2];
    if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
        // nodes[2] can be null or a test-expr
        if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
            qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
            switch (ret_type) {
                case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break;
                case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break;
                case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break;
                case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break;
                default: compile_syntax_error(comp, pn_annotation, "unknown type"); return;
            }
        } else {
            compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
        }
    }

    mp_parse_node_t pn_body = pns->nodes[3]; // body
    mp_parse_node_t *nodes;
    int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);

    for (int i = 0; i < num; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
        mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i];
        if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
            // no instructions
            continue;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
            // not an instruction; error
        not_an_instruction:
            compile_syntax_error(comp, nodes[i], "expecting an assembler instruction");
            return;
        }

        // check structure of parse node
        assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
        if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
            goto not_an_instruction;
        }
        pns2 = (mp_parse_node_struct_t*)pns2->nodes[0];
        if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
            goto not_an_instruction;
        }
        if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
            goto not_an_instruction;
        }
        if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
            goto not_an_instruction;
        }

        // parse node looks like an instruction
        // get instruction name and args
        qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
        pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren
        mp_parse_node_t *pn_arg;
        int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);

        // emit instructions
        if (op == MP_QSTR_label) {
            if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
                compile_syntax_error(comp, nodes[i], "'label' requires 1 argument");
                return;
            }
            uint lab = comp_next_label(comp);
            if (pass > MP_PASS_SCOPE) {
                if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
                    compile_syntax_error(comp, nodes[i], "label redefined");
                    return;
                }
            }
        } else if (op == MP_QSTR_align) {
            if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
                compile_syntax_error(comp, nodes[i], "'align' requires 1 argument");
                return;
            }
            if (pass > MP_PASS_SCOPE) {
                mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm,
                    MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
            }
        } else if (op == MP_QSTR_data) {
            if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
                compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments");
                return;
            }
            if (pass > MP_PASS_SCOPE) {
                mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
                for (uint j = 1; j < n_args; j++) {
                    if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
                        compile_syntax_error(comp, nodes[i], "'data' requires integer arguments");
                        return;
                    }
                    mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm,
                        bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
                }
            }
        } else {
            if (pass > MP_PASS_SCOPE) {
                EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
            }
        }

        if (comp->compile_error != MP_OBJ_NULL) {
            pns = pns2; // this is the parse node that had the error
            goto inline_asm_error;
        }
    }

    if (comp->pass > MP_PASS_SCOPE) {
        EMIT_INLINE_ASM_ARG(end_pass, type_sig);

        if (comp->pass == MP_PASS_EMIT) {
            void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm);
            mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
                f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm),
                NULL, comp->scope_cur->num_pos_args, 0, type_sig);
        }
    }

    if (comp->compile_error != MP_OBJ_NULL) {
        // inline assembler had an error; set line for its exception
    inline_asm_error:
        comp->compile_error_line = pns->source_line;
    }
}
#endif

STATIC void scope_compute_things(scope_t *scope) {
    // in MicroPython we put the *x parameter after all other parameters (except **y)
    if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
        id_info_t *id_param = NULL;
        for (int i = scope->id_info_len - 1; i >= 0; i--) {
            id_info_t *id = &scope->id_info[i];
            if (id->flags & ID_FLAG_IS_STAR_PARAM) {
                if (id_param != NULL) {
                    // swap star param with last param
                    id_info_t temp = *id_param; *id_param = *id; *id = temp;
                }
                break;
            } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
                id_param = id;
            }
        }
    }

    // in functions, turn implicit globals into explicit globals
    // compute the index of each local
    scope->num_locals = 0;
    for (int i = 0; i < scope->id_info_len; i++) {
        id_info_t *id = &scope->id_info[i];
        if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
            // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
            continue;
        }
        if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
            id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
        }
        // params always count for 1 local, even if they are a cell
        if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
            id->local_num = scope->num_locals++;
        }
    }

    // compute the index of cell vars
    for (int i = 0; i < scope->id_info_len; i++) {
        id_info_t *id = &scope->id_info[i];
        // in MicroPython the cells come right after the fast locals
        // parameters are not counted here, since they remain at the start
        // of the locals, even if they are cell vars
        if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
            id->local_num = scope->num_locals;
            scope->num_locals += 1;
        }
    }

    // compute the index of free vars
    // make sure they are in the order of the parent scope
    if (scope->parent != NULL) {
        int num_free = 0;
        for (int i = 0; i < scope->parent->id_info_len; i++) {
            id_info_t *id = &scope->parent->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
                for (int j = 0; j < scope->id_info_len; j++) {
                    id_info_t *id2 = &scope->id_info[j];
                    if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
                        assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
                        // in MicroPython the frees come first, before the params
                        id2->local_num = num_free;
                        num_free += 1;
                    }
                }
            }
        }
        // in MicroPython shift all other locals after the free locals
        if (num_free > 0) {
            for (int i = 0; i < scope->id_info_len; i++) {
                id_info_t *id = &scope->id_info[i];
                if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
                    id->local_num += num_free;
                }
            }
            scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
            scope->num_locals += num_free;
        }
    }
}

#if !MICROPY_PERSISTENT_CODE_SAVE
STATIC
#endif
mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
    // put compiler state on the stack, it's relatively small
    compiler_t comp_state = {0};
    compiler_t *comp = &comp_state;

    comp->source_file = source_file;
    comp->is_repl = is_repl;
    comp->break_label = INVALID_LABEL;
    comp->continue_label = INVALID_LABEL;

    // create the module scope
    scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);

    // create standard emitter; it's used at least for MP_PASS_SCOPE
    emit_t *emit_bc = emit_bc_new();

    // compile pass 1
    comp->emit = emit_bc;
    #if MICROPY_EMIT_NATIVE
    comp->emit_method_table = &emit_bc_method_table;
    #endif
    uint max_num_labels = 0;
    for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
        if (false) {
        #if MICROPY_EMIT_INLINE_ASM
        } else if (s->emit_options == MP_EMIT_OPT_ASM) {
            compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
        #endif
        } else {
            compile_scope(comp, s, MP_PASS_SCOPE);
        }

        // update maximim number of labels needed
        if (comp->next_label > max_num_labels) {
            max_num_labels = comp->next_label;
        }
    }

    // compute some things related to scope and identifiers
    for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
        scope_compute_things(s);
    }

    // set max number of labels now that it's calculated
    emit_bc_set_max_num_labels(emit_bc, max_num_labels);

    // compile pass 2 and 3
#if MICROPY_EMIT_NATIVE
    emit_t *emit_native = NULL;
#endif
    for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
        if (false) {
            // dummy

        #if MICROPY_EMIT_INLINE_ASM
        } else if (s->emit_options == MP_EMIT_OPT_ASM) {
            // inline assembly
            if (comp->emit_inline_asm == NULL) {
                comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
            }
            comp->emit = NULL;
            comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table);
            compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
            #if MICROPY_EMIT_INLINE_XTENSA
            // Xtensa requires an extra pass to compute size of l32r const table
            // TODO this can be improved by calculating it during SCOPE pass
            // but that requires some other structural changes to the asm emitters
            compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
            #endif
            if (comp->compile_error == MP_OBJ_NULL) {
                compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
            }
        #endif

        } else {

            // choose the emit type

            switch (s->emit_options) {

#if MICROPY_EMIT_NATIVE
                case MP_EMIT_OPT_NATIVE_PYTHON:
                case MP_EMIT_OPT_VIPER:
                    if (emit_native == NULL) {
                        emit_native = NATIVE_EMITTER(new)(&comp->compile_error, max_num_labels);
                    }
                    comp->emit_method_table = &NATIVE_EMITTER(method_table);
                    comp->emit = emit_native;
                    EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
                    break;
#endif // MICROPY_EMIT_NATIVE

                default:
                    comp->emit = emit_bc;
                    #if MICROPY_EMIT_NATIVE
                    comp->emit_method_table = &emit_bc_method_table;
                    #endif
                    break;
            }

            // need a pass to compute stack size
            compile_scope(comp, s, MP_PASS_STACK_SIZE);

            // second last pass: compute code size
            if (comp->compile_error == MP_OBJ_NULL) {
                compile_scope(comp, s, MP_PASS_CODE_SIZE);
            }

            // final pass: emit code
            if (comp->compile_error == MP_OBJ_NULL) {
                compile_scope(comp, s, MP_PASS_EMIT);
            }
        }
    }

    if (comp->compile_error != MP_OBJ_NULL) {
        // if there is no line number for the error then use the line
        // number for the start of this scope
        compile_error_set_line(comp, comp->scope_cur->pn);
        // add a traceback to the exception using relevant source info
        mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
            comp->compile_error_line, comp->scope_cur->simple_name);
    }

    // free the emitters

    emit_bc_free(emit_bc);
#if MICROPY_EMIT_NATIVE
    if (emit_native != NULL) {
        NATIVE_EMITTER(free)(emit_native);
    }
#endif
    #if MICROPY_EMIT_INLINE_ASM
    if (comp->emit_inline_asm != NULL) {
        ASM_EMITTER(free)(comp->emit_inline_asm);
    }
    #endif

    // free the parse tree
    mp_parse_tree_clear(parse_tree);

    // free the scopes
    mp_raw_code_t *outer_raw_code = module_scope->raw_code;
    for (scope_t *s = module_scope; s;) {
        scope_t *next = s->next;
        scope_free(s);
        s = next;
    }

    if (comp->compile_error != MP_OBJ_NULL) {
        nlr_raise(comp->compile_error);
    } else {
        return outer_raw_code;
    }
}

mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
    mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl);
    // return function that executes the outer module
    return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
}

#endif // MICROPY_ENABLE_COMPILER