integral.cpp
7.46 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <poincare/integral.h>
#include <poincare/symbol.h>
#include <poincare/context.h>
#include <poincare/undefined.h>
#include <cmath>
extern "C" {
#include <assert.h>
#include <float.h>
#include <stdlib.h>
}
#include "layout/integral_layout.h"
#include "layout/horizontal_layout.h"
namespace Poincare {
Expression::Type Integral::type() const {
return Type::Integral;
}
Expression * Integral::clone() const {
Integral * a = new Integral(m_operands, true);
return a;
}
int Integral::polynomialDegree(char symbolName) const {
if (symbolName == 'x') {
int da = operand(1)->polynomialDegree(symbolName);
int db = operand(2)->polynomialDegree(symbolName);
if (da != 0 || db != 0) {
return -1;
}
return 0;
}
return Expression::polynomialDegree(symbolName);
}
Expression * Integral::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
if (operand(0)->type() == Type::Matrix || operand(1)->type() == Type::Matrix || operand(2)->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
#endif
return this;
}
template<typename T>
Complex<T> * Integral::templatedApproximate(Context & context, AngleUnit angleUnit) const {
Evaluation<T> * aInput = operand(1)->privateApproximate(T(), context, angleUnit);
T a = aInput->toScalar();
delete aInput;
Evaluation<T> * bInput = operand(2)->privateApproximate(T(), context, angleUnit);
T b = bInput->toScalar();
delete bInput;
if (std::isnan(a) || std::isnan(b)) {
return new Complex<T>(Complex<T>::Undefined());
}
#ifdef LAGRANGE_METHOD
T result = lagrangeGaussQuadrature<T>(a, b, context, angleUnit);
#else
T result = adaptiveQuadrature<T>(a, b, 0.1, k_maxNumberOfIterations, context, angleUnit);
#endif
return new Complex<T>(result);
}
ExpressionLayout * Integral::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
return new IntegralLayout(
operand(0)->createLayout(floatDisplayMode, numberOfSignificantDigits),
operand(1)->createLayout(floatDisplayMode, numberOfSignificantDigits),
operand(2)->createLayout(floatDisplayMode, numberOfSignificantDigits),
false);
}
template<typename T>
T Integral::functionValueAtAbscissa(T x, Context & context, AngleUnit angleUnit) const {
return operand(0)->approximateWithValueForSymbol('x', x, context, angleUnit);
}
#ifdef LAGRANGE_METHOD
template<typename T>
T Integral::lagrangeGaussQuadrature(T a, T b, Context & context, AngleUnit angleUnit) const {
/* We here use Gauss-Legendre quadrature with n = 5
* Gauss-Legendre abscissae and weights can be found in
* C/C++ library source code. */
const static T x[10]={0.0765265211334973337546404, 0.2277858511416450780804962, 0.3737060887154195606725482, 0.5108670019508270980043641,
0.6360536807265150254528367, 0.7463319064601507926143051, 0.8391169718222188233945291, 0.9122344282513259058677524,
0.9639719272779137912676661, 0.9931285991850949247861224};
const static T w[10]={0.1527533871307258506980843, 0.1491729864726037467878287, 0.1420961093183820513292983, 0.1316886384491766268984945, 0.1181945319615184173123774,
0.1019301198172404350367501, 0.0832767415767047487247581, 0.0626720483341090635695065, 0.0406014298003869413310400, 0.0176140071391521183118620};
T xm = 0.5*(a+b);
T xr = 0.5*(b-a);
T result = 0;
for (int j = 0; j < 10; j++) {
T dx = xr * x[j];
T evaluationAfterX = functionValueAtAbscissa(xm+dx, context, angleUnit);
if (std::isnan(evaluationAfterX)) {
return NAN;
}
T evaluationBeforeX = functionValueAtAbscissa(xm-dx, context, angleUnit);
if (std::isnan(evaluationBeforeX)) {
return NAN;
}
result += w[j]*(evaluationAfterX + evaluationBeforeX);
}
result *= xr;
return result;
}
#else
template<typename T>
Integral::DetailedResult<T> Integral::kronrodGaussQuadrature(T a, T b, Context & context, AngleUnit angleUnit) const {
static T epsilon = sizeof(T) == sizeof(double) ? DBL_EPSILON : FLT_EPSILON;
static T max = sizeof(T) == sizeof(double) ? DBL_MAX : FLT_MAX;
/* We here use Kronrod-Legendre quadrature with n = 21
* The abscissa and weights are taken from QUADPACK library. */
const static T wg[5]= {0.066671344308688137593568809893332, 0.149451349150580593145776339657697,
0.219086362515982043995534934228163, 0.269266719309996355091226921569469, 0.295524224714752870173892994651338};
const static T xgk[11]= {0.995657163025808080735527280689003, 0.973906528517171720077964012084452,
0.930157491355708226001207180059508, 0.865063366688984510732096688423493, 0.780817726586416897063717578345042,
0.679409568299024406234327365114874, 0.562757134668604683339000099272694, 0.433395394129247190799265943165784,
0.294392862701460198131126603103866, 0.148874338981631210884826001129720, 0.000000000000000000000000000000000};
const static T wgk[11]= {0.011694638867371874278064396062192, 0.032558162307964727478818972459390,
0.054755896574351996031381300244580, 0.075039674810919952767043140916190, 0.093125454583697605535065465083366,
0.109387158802297641899210590325805, 0.123491976262065851077958109831074, 0.134709217311473325928054001771707,
0.142775938577060080797094273138717, 0.147739104901338491374841515972068, 0.149445554002916905664936468389821};
T fv1[10];
T fv2[10];
T centr = 0.5*(a+b);
T hlgth = 0.5*(b-a);
T dhlgth = std::fabs(hlgth);
DetailedResult<T> errorResult;
errorResult.integral = NAN;
errorResult.absoluteError = 0;
T resg = 0;
T fc = functionValueAtAbscissa(centr, context, angleUnit);
if (std::isnan(fc)) {
return errorResult;
}
T resk = wgk[10]*fc;
T resabs = std::fabs(resk);
for (int j = 0; j < 10; j++) {
T absc = hlgth*xgk[j];
T fval1 = functionValueAtAbscissa(centr-absc, context, angleUnit);
if (std::isnan(fval1)) {
return errorResult;
}
T fval2 = functionValueAtAbscissa(centr+absc, context, angleUnit);
if (std::isnan(fval2)) {
return errorResult;
}
fv1[j] = fval1;
fv2[j] = fval2;
T fsum = fval1+fval2;
if (j%2 == 1) {
resg += wg[j/2]*fsum;
}
resk += wgk[j]*fsum;
resabs += wgk[j]*(std::fabs(fval1)+std::fabs(fval2));
}
T reskh = resk*0.5;
T resasc = wgk[10]*std::fabs(fc-reskh);
for (int j = 0; j < 10; j++) {
resasc += wgk[j]*(std::fabs(fv1[j]-reskh)+std::fabs(fv2[j]-reskh));
}
T integral = resk*hlgth;
resabs = resabs*dhlgth;
resasc = resasc*dhlgth;
T abserr = std::fabs((resk-resg)*hlgth);
if (resasc != 0 && abserr != 0) {
abserr = 1 > std::pow((T)(200*abserr/resasc), (T)1.5)? resasc*std::pow((T)(200*abserr/resasc), (T)1.5) : resasc;
}
if (resabs > max/(50.0*epsilon)) {
abserr = abserr > epsilon*50*resabs ? abserr : epsilon*50*resabs;
}
DetailedResult<T> result;
result.integral = integral;
result.absoluteError = abserr;
return result;
}
template<typename T>
T Integral::adaptiveQuadrature(T a, T b, T eps, int numberOfIterations, Context & context, AngleUnit angleUnit) const {
if (shouldStopProcessing()) {
return NAN;
}
DetailedResult<T> quadKG = kronrodGaussQuadrature(a, b, context, angleUnit);
T result = quadKG.integral;
if (quadKG.absoluteError <= eps) {
return result;
} else if (--numberOfIterations > 0) {
T m = (a+b)/2;
return adaptiveQuadrature<T>(a, m, eps/2, numberOfIterations, context, angleUnit) + adaptiveQuadrature<T>(m, b, eps/2, numberOfIterations, context, angleUnit);
} else {
return NAN;
}
}
#endif
}