objint.c 15.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdlib.h>
#include <assert.h>
#include <string.h>

#include "py/nlr.h"
#include "py/parsenum.h"
#include "py/smallint.h"
#include "py/objint.h"
#include "py/objstr.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/binary.h"

#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif

// This dispatcher function is expected to be independent of the implementation of long int
STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    (void)type_in;
    mp_arg_check_num(n_args, n_kw, 0, 2, false);

    switch (n_args) {
        case 0:
            return MP_OBJ_NEW_SMALL_INT(0);

        case 1:
            if (MP_OBJ_IS_INT(args[0])) {
                // already an int (small or long), just return it
                return args[0];
            } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) {
                // a string, parse it
                size_t l;
                const char *s = mp_obj_str_get_data(args[0], &l);
                return mp_parse_num_integer(s, l, 0, NULL);
#if MICROPY_PY_BUILTINS_FLOAT
            } else if (mp_obj_is_float(args[0])) {
                return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
#endif
            } else {
                // try to convert to small int (eg from bool)
                return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
            }

        case 2:
        default: {
            // should be a string, parse it
            // TODO proper error checking of argument types
            size_t l;
            const char *s = mp_obj_str_get_data(args[0], &l);
            return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
        }
    }
}

#if MICROPY_PY_BUILTINS_FLOAT

typedef enum {
    MP_FP_CLASS_FIT_SMALLINT,
    MP_FP_CLASS_FIT_LONGINT,
    MP_FP_CLASS_OVERFLOW
} mp_fp_as_int_class_t;

STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
    union {
        mp_float_t f;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
        uint32_t i;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        uint32_t i[2];
#endif
    } u = {val};

    uint32_t e;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
    e = u.i;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
    e = u.i[MP_ENDIANNESS_LITTLE];
#endif
#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)

    if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        e |= u.i[MP_ENDIANNESS_BIG] != 0;
#endif
        if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) {
            // handle case of -0 (when sign is set but rest of bits are zero)
            e = 0;
        } else {
            e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
        }
    } else {
        e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1);
    }
    // 8 * sizeof(uintptr_t) counts the number of bits for a small int
    // TODO provide a way to configure this properly
    if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
        return MP_FP_CLASS_FIT_SMALLINT;
    }
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
    if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
        return MP_FP_CLASS_FIT_LONGINT;
    }
#endif
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
    return MP_FP_CLASS_FIT_LONGINT;
#else
    return MP_FP_CLASS_OVERFLOW;
#endif
}
#undef MP_FLOAT_SIGN_SHIFT_I32
#undef MP_FLOAT_EXP_SHIFT_I32

mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
    int cl = fpclassify(val);
    if (cl == FP_INFINITE) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "can't convert inf to int"));
    } else if (cl == FP_NAN) {
        mp_raise_ValueError("can't convert NaN to int");
    } else {
        mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
        if (icl == MP_FP_CLASS_FIT_SMALLINT) {
            return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
        #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
        } else {
            mp_obj_int_t *o = mp_obj_int_new_mpz();
            mpz_set_from_float(&o->mpz, val);
            return MP_OBJ_FROM_PTR(o);
        }
        #else
        #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
        } else if (icl == MP_FP_CLASS_FIT_LONGINT) {
            return mp_obj_new_int_from_ll((long long)val);
        #endif
        } else {
            mp_raise_ValueError("float too big");
        }
        #endif
    }
}

#endif

#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
typedef mp_longint_impl_t fmt_int_t;
typedef unsigned long long fmt_uint_t;
#else
typedef mp_int_t fmt_int_t;
typedef mp_uint_t fmt_uint_t;
#endif

void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    (void)kind;
    // The size of this buffer is rather arbitrary. If it's not large
    // enough, a dynamic one will be allocated.
    char stack_buf[sizeof(fmt_int_t) * 4];
    char *buf = stack_buf;
    size_t buf_size = sizeof(stack_buf);
    size_t fmt_size;

    char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
    mp_print_str(print, str);

    if (buf != stack_buf) {
        m_del(char, buf, buf_size);
    }
}

STATIC const uint8_t log_base2_floor[] = {
    0, 1, 1, 2,
    2, 2, 2, 3,
    3, 3, 3, 3,
    3, 3, 3, 4,
    /* if needed, these are the values for higher bases
    4, 4, 4, 4,
    4, 4, 4, 4,
    4, 4, 4, 4,
    4, 4, 4, 5
    */
};

size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) {
    assert(2 <= base && base <= 16);
    size_t num_digits = num_bits / log_base2_floor[base - 1] + 1;
    size_t num_commas = comma ? num_digits / 3 : 0;
    size_t prefix_len = prefix ? strlen(prefix) : 0;
    return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
}

// This routine expects you to pass in a buffer and size (in *buf and *buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in,
                           int base, const char *prefix, char base_char, char comma) {
    fmt_int_t num;
    if (MP_OBJ_IS_SMALL_INT(self_in)) {
        // A small int; get the integer value to format.
        num = MP_OBJ_SMALL_INT_VALUE(self_in);
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
    } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
        // Not a small int.
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
        const mp_obj_int_t *self = self_in;
        // Get the value to format; mp_obj_get_int truncates to mp_int_t.
        num = self->val;
#else
        // Delegate to the implementation for the long int.
        return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
#endif
#endif
    } else {
        // Not an int.
        **buf = '\0';
        *fmt_size = 0;
        return *buf;
    }

    char sign = '\0';
    if (num < 0) {
        num = -num;
        sign = '-';
    }

    size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma);
    if (needed_size > *buf_size) {
        *buf = m_new(char, needed_size);
        *buf_size = needed_size;
    }
    char *str = *buf;

    char *b = str + needed_size;
    *(--b) = '\0';
    char *last_comma = b;

    if (num == 0) {
        *(--b) = '0';
    } else {
        do {
            // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic
            int c = (fmt_uint_t)num % base;
            num = (fmt_uint_t)num / base;
            if (c >= 10) {
                c += base_char - 10;
            } else {
                c += '0';
            }
            *(--b) = c;
            if (comma && num != 0 && b > str && (last_comma - b) == 3) {
                *(--b) = comma;
                last_comma = b;
            }
        }
        while (b > str && num != 0);
    }
    if (prefix) {
        size_t prefix_len = strlen(prefix);
        char *p = b - prefix_len;
        if (p > str) {
            b = p;
            while (*prefix) {
                *p++ = *prefix++;
            }
        }
    }
    if (sign && b > str) {
        *(--b) = sign;
    }
    *fmt_size = *buf + needed_size - b - 1;

    return b;
}

#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE

int mp_obj_int_sign(mp_obj_t self_in) {
    mp_int_t val = mp_obj_get_int(self_in);
    if (val < 0) {
        return -1;
    } else if (val > 0) {
        return 1;
    } else {
        return 0;
    }
}

// This must handle int and bool types, and must raise a
// TypeError if the argument is not integral
mp_obj_t mp_obj_int_abs(mp_obj_t self_in) {
    mp_int_t val = mp_obj_get_int(self_in);
    if (val < 0) {
        val = -val;
    }
    return MP_OBJ_NEW_SMALL_INT(val);
}

// This is called for operations on SMALL_INT that are not handled by mp_unary_op
mp_obj_t mp_obj_int_unary_op(mp_uint_t op, mp_obj_t o_in) {
    return MP_OBJ_NULL; // op not supported
}

// This is called for operations on SMALL_INT that are not handled by mp_binary_op
mp_obj_t mp_obj_int_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
    return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}

// This is called only with strings whose value doesn't fit in SMALL_INT
mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) {
    mp_raise_msg(&mp_type_OverflowError, "long int not supported in this build");
    return mp_const_none;
}

// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ll(long long val) {
    mp_raise_msg(&mp_type_OverflowError, "small int overflow");
    return mp_const_none;
}

// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
    mp_raise_msg(&mp_type_OverflowError, "small int overflow");
    return mp_const_none;
}

mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
    // SMALL_INT accepts only signed numbers, so make sure the input
    // value fits completely in the small-int positive range.
    if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
        return MP_OBJ_NEW_SMALL_INT(value);
    }
    mp_raise_msg(&mp_type_OverflowError, "small int overflow");
    return mp_const_none;
}

mp_obj_t mp_obj_new_int(mp_int_t value) {
    if (MP_SMALL_INT_FITS(value)) {
        return MP_OBJ_NEW_SMALL_INT(value);
    }
    mp_raise_msg(&mp_type_OverflowError, "small int overflow");
    return mp_const_none;
}

mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}

mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}

#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE

// This dispatcher function is expected to be independent of the implementation of long int
// It handles the extra cases for integer-like arithmetic
mp_obj_t mp_obj_int_binary_op_extra_cases(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
    if (rhs_in == mp_const_false) {
        // false acts as 0
        return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
    } else if (rhs_in == mp_const_true) {
        // true acts as 0
        return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
    } else if (op == MP_BINARY_OP_MULTIPLY) {
        if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_bytes) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
            // multiply is commutative for these types, so delegate to them
            return mp_binary_op(op, rhs_in, lhs_in);
        }
    }
    return MP_OBJ_NULL; // op not supported
}

// this is a classmethod
STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
    // TODO: Support signed param (assumes signed=False at the moment)
    (void)n_args;

    // get the buffer info
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);

    const byte* buf = (const byte*)bufinfo.buf;
    int delta = 1;
    if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
        buf += bufinfo.len - 1;
        delta = -1;
    }

    mp_uint_t value = 0;
    size_t len = bufinfo.len;
    for (; len--; buf += delta) {
        #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
        if (value > (MP_SMALL_INT_MAX >> 8)) {
            // Result will overflow a small-int so construct a big-int
            return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf);
        }
        #endif
        value = (value << 8) | *buf;
    }
    return mp_obj_new_int_from_uint(value);
}

STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));

STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) {
    // TODO: Support signed param (assumes signed=False)
    (void)n_args;

    mp_int_t len = mp_obj_get_int(args[1]);
    if (len < 0) {
        mp_raise_ValueError(NULL);
    }
    bool big_endian = args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little);

    vstr_t vstr;
    vstr_init_len(&vstr, len);
    byte *data = (byte*)vstr.buf;
    memset(data, 0, len);

    #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
    if (!MP_OBJ_IS_SMALL_INT(args[0])) {
        mp_obj_int_to_bytes_impl(args[0], big_endian, len, data);
    } else
    #endif
    {
        mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]);
        size_t l = MIN((size_t)len, sizeof(val));
        mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val);
    }

    return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 3, 4, int_to_bytes);

STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
    { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
    { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
};

STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);

const mp_obj_type_t mp_type_int = {
    { &mp_type_type },
    .name = MP_QSTR_int,
    .print = mp_obj_int_print,
    .make_new = mp_obj_int_make_new,
    .unary_op = mp_obj_int_unary_op,
    .binary_op = mp_obj_int_binary_op,
    .locals_dict = (mp_obj_dict_t*)&int_locals_dict,
};