formatfloat.c 12.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/mpconfig.h"
#if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE

#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include "py/formatfloat.h"

/***********************************************************************

  Routine for converting a arbitrary floating
  point number into a string.

  The code in this funcion was inspired from Fred Bayer's pdouble.c.
  Since pdouble.c was released as Public Domain, I'm releasing this
  code as public domain as well.

  The original code can be found in https://github.com/dhylands/format-float

  Dave Hylands

***********************************************************************/

#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
// 1 sign bit, 8 exponent bits, and 23 mantissa bits.
// exponent values 0 and 255 are reserved, exponent can be 1 to 254.
// exponent is stored with a bias of 127.
// The min and max floats are on the order of 1x10^37 and 1x10^-37

#define FPTYPE float
#define FPCONST(x) x##F
#define FPROUND_TO_ONE 0.9999995F
#define FPDECEXP 32
#define FPMIN_BUF_SIZE 6 // +9e+99

#define FLT_SIGN_MASK   0x80000000
#define FLT_EXP_MASK    0x7F800000
#define FLT_MAN_MASK    0x007FFFFF

union floatbits {
    float f;
    uint32_t u;
};
static inline int fp_signbit(float x) { union floatbits fb = {x}; return fb.u & FLT_SIGN_MASK; }
static inline int fp_isspecial(float x) { union floatbits fb = {x}; return (fb.u & FLT_EXP_MASK) == FLT_EXP_MASK; }
static inline int fp_isinf(float x) { union floatbits fb = {x}; return (fb.u & FLT_MAN_MASK) == 0; }
static inline int fp_iszero(float x) { union floatbits fb = {x}; return fb.u == 0; }
static inline int fp_isless1(float x) { union floatbits fb = {x}; return fb.u < 0x3f800000; }
// Assumes both fp_isspecial() and fp_isinf() were applied before
#define fp_isnan(x) 1

#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE

#define FPTYPE double
#define FPCONST(x) x
#define FPROUND_TO_ONE 0.999999999995
#define FPDECEXP 256
#define FPMIN_BUF_SIZE 7 // +9e+199
#include <math.h>
#define fp_signbit(x) signbit(x)
#define fp_isspecial(x) 1
#define fp_isnan(x) isnan(x)
#define fp_isinf(x) isinf(x)
#define fp_iszero(x) (x == 0)
#define fp_isless1(x) (x < 1.0)

#endif

static const FPTYPE g_pos_pow[] = {
    #if FPDECEXP > 32
    1e256, 1e128, 1e64,
    #endif
    1e32, 1e16, 1e8, 1e4, 1e2, 1e1
};
static const FPTYPE g_neg_pow[] = {
    #if FPDECEXP > 32
    1e-256, 1e-128, 1e-64,
    #endif
    1e-32, 1e-16, 1e-8, 1e-4, 1e-2, 1e-1
};

int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, char sign) {

    char *s = buf;

    if (buf_size <= FPMIN_BUF_SIZE) {
        // FPMIN_BUF_SIZE is the minimum size needed to store any FP number.
        // If the buffer does not have enough room for this (plus null terminator)
        // then don't try to format the float.

        if (buf_size >= 2) {
            *s++ = '?';
        }
        if (buf_size >= 1) {
            *s++ = '\0';
        }
        return buf_size >= 2;
    }
    if (fp_signbit(f)) {
        *s++ = '-';
        f = -f;
    } else {
        if (sign) {
            *s++ = sign;
        }
    }

    // buf_remaining contains bytes available for digits and exponent.
    // It is buf_size minus room for the sign and null byte.
    int buf_remaining = buf_size - 1 - (s - buf);

    if (fp_isspecial(f)) {
        char uc = fmt & 0x20;
        if (fp_isinf(f)) {
            *s++ = 'I' ^ uc;
            *s++ = 'N' ^ uc;
            *s++ = 'F' ^ uc;
            goto ret;
        } else if (fp_isnan(f)) {
            *s++ = 'N' ^ uc;
            *s++ = 'A' ^ uc;
            *s++ = 'N' ^ uc;
        ret:
            *s = '\0';
            return s - buf;
        }
    }

    if (prec < 0) {
        prec = 6;
    }
    char e_char = 'E' | (fmt & 0x20);   // e_char will match case of fmt
    fmt |= 0x20; // Force fmt to be lowercase
    char org_fmt = fmt;
    if (fmt == 'g' && prec == 0) {
        prec = 1;
    }
    int e, e1;
    int dec = 0;
    char e_sign = '\0';
    int num_digits = 0;
    const FPTYPE *pos_pow = g_pos_pow;
    const FPTYPE *neg_pow = g_neg_pow;

    if (fp_iszero(f)) {
        e = 0;
        if (fmt == 'f') {
            // Truncate precision to prevent buffer overflow
            if (prec + 2 > buf_remaining) {
                prec = buf_remaining - 2;
            }
            num_digits = prec + 1;
        } else {
            // Truncate precision to prevent buffer overflow
            if (prec + 6 > buf_remaining) {
                prec = buf_remaining - 6;
            }
            if (fmt == 'e') {
                e_sign = '+';
            }
        }
    } else if (fp_isless1(f)) {
        // We need to figure out what an integer digit will be used
        // in case 'f' is used (or we revert other format to it below).
        // As we just tested number to be <1, this is obviously 0,
        // but we can round it up to 1 below.
        char first_dig = '0';
        if (f >= FPROUND_TO_ONE) {
            first_dig = '1';
        }

        // Build negative exponent
        for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
            if (*neg_pow > f) {
                e += e1;
                f *= *pos_pow;
            }
        }
        char e_sign_char = '-';
        if (fp_isless1(f) && f >= FPROUND_TO_ONE) {
            f = FPCONST(1.0);
            if (e == 0) {
                e_sign_char = '+';
            }
        } else if (fp_isless1(f)) {
            e++;
            f *= FPCONST(10.0);
        }

        // If the user specified 'g' format, and e is <= 4, then we'll switch
        // to the fixed format ('f')

        if (fmt == 'f' || (fmt == 'g' && e <= 4)) {
            fmt = 'f';
            dec = -1;
            *s++ = first_dig;

            if (org_fmt == 'g') {
                prec += (e - 1);
            }

            // truncate precision to prevent buffer overflow
            if (prec + 2 > buf_remaining) {
                prec = buf_remaining - 2;
            }

            num_digits = prec;
            if (num_digits) {
                *s++ = '.';
                while (--e && num_digits) {
                    *s++ = '0';
                    num_digits--;
                }
            }
        } else {
            // For e & g formats, we'll be printing the exponent, so set the
            // sign.
            e_sign = e_sign_char;
            dec = 0;

            if (prec > (buf_remaining - FPMIN_BUF_SIZE)) {
                prec = buf_remaining - FPMIN_BUF_SIZE;
                if (fmt == 'g') {
                    prec++;
                }
            }
        }
    } else {
        // Build positive exponent
        for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
            if (*pos_pow <= f) {
                e += e1;
                f *= *neg_pow;
            }
        }

        // It can be that f was right on the edge of an entry in pos_pow needs to be reduced
        if (f >= FPCONST(10.0)) {
            e += 1;
            f *= FPCONST(0.1);
        }

        // If the user specified fixed format (fmt == 'f') and e makes the
        // number too big to fit into the available buffer, then we'll
        // switch to the 'e' format.

        if (fmt == 'f') {
            if (e >= buf_remaining) {
                fmt = 'e';
            } else if ((e + prec + 2) > buf_remaining) {
                prec = buf_remaining - e - 2;
                if (prec < 0) {
                    // This means no decimal point, so we can add one back
                    // for the decimal.
                    prec++;
                }
            }
        }
        if (fmt == 'e' && prec > (buf_remaining - FPMIN_BUF_SIZE)) {
            prec = buf_remaining - FPMIN_BUF_SIZE;
        }
        if (fmt == 'g'){
            // Truncate precision to prevent buffer overflow
            if (prec + (FPMIN_BUF_SIZE - 1) > buf_remaining) {
                prec = buf_remaining - (FPMIN_BUF_SIZE - 1);
            }
        }
        // If the user specified 'g' format, and e is < prec, then we'll switch
        // to the fixed format.

        if (fmt == 'g' && e < prec) {
            fmt = 'f';
            prec -= (e + 1);
        }
        if (fmt == 'f') {
            dec = e;
            num_digits = prec + e + 1;
        } else {
            e_sign = '+';
        }
    }
    if (prec < 0) {
        // This can happen when the prec is trimmed to prevent buffer overflow
        prec = 0;
    }

    // We now have num.f as a floating point number between >= 1 and < 10
    // (or equal to zero), and e contains the absolute value of the power of
    // 10 exponent. and (dec + 1) == the number of dgits before the decimal.

    // For e, prec is # digits after the decimal
    // For f, prec is # digits after the decimal
    // For g, prec is the max number of significant digits
    //
    // For e & g there will be a single digit before the decimal
    // for f there will be e digits before the decimal

    if (fmt == 'e') {
        num_digits = prec + 1;
    } else if (fmt == 'g') {
        if (prec == 0) {
            prec = 1;
        }
        num_digits = prec;
    }

    // Print the digits of the mantissa
    for (int i = 0; i < num_digits; ++i, --dec) {
        int32_t d = (int32_t)f;
        *s++ = '0' + d;
        if (dec == 0 && prec > 0) {
            *s++ = '.';
        }
        f -= (FPTYPE)d;
        f *= FPCONST(10.0);
    }

    // Round
    // If we print non-exponential format (i.e. 'f'), but a digit we're going
    // to round by (e) is too far away, then there's nothing to round.
    if ((org_fmt != 'f' || e <= 1) && f >= FPCONST(5.0)) {
        char *rs = s;
        rs--;
        while (1) {
            if (*rs == '.') {
                rs--;
                continue;
            }
            if (*rs < '0' || *rs > '9') {
                // + or -
                rs++; // So we sit on the digit to the right of the sign
                break;
            }
            if (*rs < '9') {
                (*rs)++;
                break;
            }
            *rs = '0';
            if (rs == buf) {
                break;
            }
            rs--;
        }
        if (*rs == '0') {
            // We need to insert a 1
            if (rs[1] == '.' && fmt != 'f') {
                // We're going to round 9.99 to 10.00
                // Move the decimal point
                rs[0] = '.';
                rs[1] = '0';
                if (e_sign == '-') {
                    e--;
                    if (e == 0) {
                        e_sign = '+';
                    }
                } else {
                    e++;
                }
            } else {
                // Need at extra digit at the end to make room for the leading '1'
                s++;
            }
            char *ss = s;
            while (ss > rs) {
                *ss = ss[-1];
                ss--;
            }
            *rs = '1';
        }
    }

    // verify that we did not overrun the input buffer so far
    assert((size_t)(s + 1 - buf) <= buf_size);

    if (org_fmt == 'g' && prec > 0) {
        // Remove trailing zeros and a trailing decimal point
        while (s[-1] == '0') {
            s--;
        }
        if (s[-1] == '.') {
            s--;
        }
    }
    // Append the exponent
    if (e_sign) {
        *s++ = e_char;
        *s++ = e_sign;
        if (FPMIN_BUF_SIZE == 7 && e >= 100) {
            *s++ = '0' + (e / 100);
        }
        *s++ = '0' + ((e / 10) % 10);
        *s++ = '0' + (e % 10);
    }
    *s = '\0';

    // verify that we did not overrun the input buffer
    assert((size_t)(s + 1 - buf) <= buf_size);

    return s - buf;
}

#endif // MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE