product.cpp
1.51 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <poincare/product.h>
#include <poincare/multiplication.h>
#include "layout/product_layout.h"
extern "C" {
#include <assert.h>
#include <stdlib.h>
}
#include <cmath>
namespace Poincare {
Expression::Type Product::type() const {
return Type::Product;
}
Expression * Product::clone() const {
Product * a = new Product(m_operands, true);
return a;
}
const char * Product::name() const {
return "product";
}
int Product::emptySequenceValue() const {
return 1;
}
ExpressionLayout * Product::createSequenceLayoutWithArgumentLayouts(ExpressionLayout * subscriptLayout, ExpressionLayout * superscriptLayout, ExpressionLayout * argumentLayout) const {
return new ProductLayout(subscriptLayout, superscriptLayout, argumentLayout);
}
template<typename T>
Expression * Product::templatedApproximateWithNextTerm(Expression * a, Expression * b) const {
if (a->type() == Type::Complex && b->type() == Type::Complex) {
Complex<T> * c = static_cast<Complex<T> *>(a);
Complex<T> * d = static_cast<Complex<T> *>(b);
return new Complex<T>(Multiplication::compute(*c, *d));
}
if (a->type() == Type::Complex) {
Complex<T> * c = static_cast<Complex<T> *>(a);
assert(b->type() == Type::Matrix);
Matrix * m = static_cast<Matrix *>(b);
return Multiplication::computeOnComplexAndMatrix(c, m);
}
assert(a->type() == Type::Matrix);
assert(b->type() == Type::Matrix);
Matrix * m = static_cast<Matrix *>(a);
Matrix * n = static_cast<Matrix *>(b);
return Multiplication::computeOnMatrices<T>(m, n);
}
}