nth_root.cpp
2.27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <poincare/nth_root.h>
#include <poincare/complex.h>
#include <poincare/division.h>
#include <poincare/power.h>
#include <poincare/undefined.h>
#include "layout/nth_root_layout.h"
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type NthRoot::type() const {
return Type::NthRoot;
}
Expression * NthRoot::clone() const {
NthRoot * a = new NthRoot(m_operands, true); return a;
}
Expression * NthRoot::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
if (operand(0)->type() == Type::Matrix || operand(1)->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
#endif
Power * invIndex = new Power(operand(1), new Rational(-1), false);
Power * p = new Power(operand(0), invIndex, false);
detachOperands();
invIndex->shallowReduce(context, angleUnit);
replaceWith(p, true);
return p->shallowReduce(context, angleUnit);
}
ExpressionLayout * NthRoot::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const {
assert(floatDisplayMode != FloatDisplayMode::Default);
assert(complexFormat != ComplexFormat::Default);
return new NthRootLayout(operand(0)->createLayout(floatDisplayMode, complexFormat), operand(1)->createLayout(floatDisplayMode, complexFormat));
}
template<typename T>
Complex<T> NthRoot::compute(const Complex<T> c, const Complex<T> d) {
if (c.a() >= 0 && c.b() == 0 && d.b() == 0) {
return Complex<T>::Float(std::pow(c.a(), 1/d.a()));
}
Complex<T> invIndex = Division::compute(Complex<T>::Float(1), d);
return Power::compute(c, invIndex);
}
template<typename T>
Expression * NthRoot::templatedApproximate(Context& context, AngleUnit angleUnit) const {
Expression * base = operand(0)->approximate<T>(context, angleUnit);
Expression * index = operand(1)->approximate<T>(context, angleUnit);
Complex<T> result = Complex<T>::Float(NAN);
if (base->type() == Type::Complex && index->type() == Type::Complex) {
Complex<T> * basec = static_cast<Complex<T> *>(base);
Complex<T> * indexc = static_cast<Complex<T> *>(index);
result = compute(*basec, *indexc);
}
delete base;
delete index;
return new Complex<T>(result);
}
}