division_remainder.cpp
2.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <poincare/division_remainder.h>
#include <poincare/rational.h>
#include <poincare/undefined.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type DivisionRemainder::type() const {
return Type::DivisionRemainder;
}
Expression * DivisionRemainder::clone() const {
DivisionRemainder * a = new DivisionRemainder(m_operands, true);
return a;
}
Expression * DivisionRemainder::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
Expression * op0 = editableOperand(0);
Expression * op1 = editableOperand(1);
#if MATRIX_EXACT_REDUCING
if (op0->type() == Type::Matrix || op1->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
#endif
if (op0->type() == Type::Rational) {
Rational * r0 = static_cast<Rational *>(op0);
if (!r0->denominator().isOne()) {
return replaceWith(new Undefined(), true);
}
}
if (op1->type() == Type::Rational) {
Rational * r1 = static_cast<Rational *>(op1);
if (!r1->denominator().isOne()) {
return replaceWith(new Undefined(), true);
}
}
if (op0->type() != Type::Rational || op1->type() != Type::Rational) {
return this;
}
Rational * r0 = static_cast<Rational *>(op0);
Rational * r1 = static_cast<Rational *>(op1);
Integer a = r0->numerator();
Integer b = r1->numerator();
if (b.isZero()) {
return replaceWith(new Undefined(), true); // TODO: new Infinite(a.isNegative())
}
Integer result = Integer::Division(a, b).remainder;
return replaceWith(new Rational(result), true);
}
template<typename T>
Complex<T> * DivisionRemainder::templatedApproximate(Context& context, AngleUnit angleUnit) const {
Expression * f1Input = operand(0)->approximate<T>(context, angleUnit);
Expression * f2Input = operand(1)->approximate<T>(context, angleUnit);
T f1 = f1Input->type() == Type::Complex ? static_cast<Complex<T> *>(f1Input)->toScalar() : NAN;
T f2 = f2Input->type() == Type::Complex ? static_cast<Complex<T> *>(f2Input)->toScalar() : NAN;
delete f1Input;
delete f2Input;
if (std::isnan(f1) || std::isnan(f2) || f1 != (int)f1 || f2 != (int)f2) {
return new Complex<T>(Complex<T>::Float(NAN));
}
return new Complex<T>(Complex<T>::Float(std::round(f1-f2*std::floor(f1/f2))));
}
}