complex.cpp
21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#include <poincare/complex.h>
#include <poincare/undefined.h>
#include <poincare/decimal.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/symbol.h>
extern "C" {
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
}
#include <cmath>
#include "layout/string_layout.h"
#include "layout/baseline_relative_layout.h"
#include <ion.h>
#include <stdio.h>
namespace Poincare {
template<typename T>
int exponent(T f) {
static double k_log10base2 = 3.321928094887362347870319429489390175864831393024580612054;
if (f == 0.0) {
return 0;
}
union {
uint64_t uint_result;
T float_result;
} u;
u.float_result = f;
int mantissaNbBit = sizeof(T) == sizeof(float) ? 23 : 52;
uint64_t oneOnExponentBits = sizeof(T) == sizeof(float)? 0xFF : 0x7FF;
int exponentBase2 = (u.uint_result >> mantissaNbBit) & oneOnExponentBits; // Get the exponent bits
exponentBase2 -= (oneOnExponentBits >> 1);
/* Compute the exponent in base 10 from exponent in base 2:
* f = m1*2^e1
* f = m2*10^e2
* --> f = m1*10^(e1/log(10,2))
* --> f = m1*10^x*10^(e1/log(10,2)-x), with x in [-1,1]
* Thus e2 = e1/log(10,2)-x,
* with x such as 1 <= m1*10^x < 9 and e1/log(10,2)-x is round.
* Knowing that the equation 1 <= m1*10^x < 10 with 1<=m1<2 has its solution
* in -0.31 < x < 1, we get:
* e2 = [e1/log(10,2)] or e2 = [e1/log(10,2)]-1 depending on m1. */
int exponentBase10 = std::round(exponentBase2/k_log10base2);
if (std::pow(10.0, exponentBase10) > std::fabs(f)) {
exponentBase10--;
}
return exponentBase10;
}
template<typename T>
Complex<T> Complex<T>::Float(T x) {
return Complex(x,0);
}
template<typename T>
Complex<T> Complex<T>::Cartesian(T a, T b) {
return Complex(a,b);
}
template<typename T>
Complex<T> Complex<T>::Polar(T r, T th) {
// If the radius is 0, theta may be undefined but shouldn't be able to affect the result.
if (r == 0) {
return Complex(0,0);
}
T c = std::cos(th);
T s = std::sin(th);
/* Cheat: see comment on cosine.cpp.
* Sine and cosine openbsd immplementationd are numerical approximation.
* We though want to avoid evaluating e^(i*pi) to -1+1E-17i. We thus round
* cosine and sine results to 0 if they are negligible compared to the
* argument th. */
c = th != 0 && std::fabs(c/th) <= Expression::epsilon<T>() ? 0 : c;
s = th != 0 && std::fabs(s/th) <= Expression::epsilon<T>() ? 0 : s;
return Complex(r*c,r*s);
}
template<typename T>
Complex<T>::Complex(const Complex<T> & other) {
m_a = other.m_a;
m_b = other.m_b;
}
template<typename T>
Complex<T> & Complex<T>::operator=(const Complex& other) {
m_a = other.m_a;
m_b = other.m_b;
return *this;
}
template<typename T>
static inline T privateFloatSetSign(T f, bool negative) {
if (negative) {
return -f;
}
return f;
}
template<typename T>
T digitsToFloat(const char * digits, int length) {
if (digits == nullptr) {
return 0;
}
T result = 0;
const char * digit = digits;
for (int i = 0; i < length; i++) {
result = 10 * result;
result += *digit-'0';
digit++;
}
return result;
}
template<typename T>
Complex<T>::Complex(const char * integralPart, int integralPartLength, bool integralNegative,
const char * fractionalPart, int fractionalPartLength,
const char * exponent, int exponentLength, bool exponentNegative) {
T i = digitsToFloat<T>(integralPart, integralPartLength);
T j = digitsToFloat<T>(fractionalPart, fractionalPartLength);
T l = privateFloatSetSign<T>(digitsToFloat<T>(exponent, exponentLength), exponentNegative);
m_a = privateFloatSetSign((i + j*std::pow(10, -std::ceil((T)fractionalPartLength)))* std::pow(10, l), integralNegative);
m_b = 0;
}
template <class T>
T Complex<T>::a() const {
return m_a;
}
template <class T>
T Complex<T>::b() const {
return m_b;
}
template <class T>
T Complex<T>::r() const {
// We want to avoid a^2 and b^2 which could both easily overflow.
// min, max = minmax(abs(a), abs(b)) (*minmax returns both arguments sorted*)
// abs(a + bi) == sqrt(a^2 + b^2)
// == sqrt(abs(a)^2 + abs(b)^2)
// == sqrt(min^2 + max^2)
// == sqrt((min^2 + max^2) * max^2/max^2)
// == sqrt((min^2 + max^2) / max^2)*sqrt(max^2)
// == sqrt(min^2/max^2 + 1) * max
// == sqrt((min/max)^2 + 1) * max
// min >= 0 &&
// max >= 0 &&
// min <= max => min/max <= 1
// => (min/max)^2 <= 1
// => (min/max)^2 + 1 <= 2
// => sqrt((min/max)^2 + 1) <= sqrt(2)
// So the calculation is guaranteed to not overflow until the final multiply.
// If (min/max)^2 underflows then min doesn't contribute anything significant
// compared to max, and the formula reduces to simply max as it should.
// We do need to be careful about the case where a == 0 && b == 0 which would
// cause a division by zero.
T min = std::fabs(m_a);
if (m_b == 0) {
return min;
}
T max = std::fabs(m_b);
if (max < min) {
T temp = min;
min = max;
max = temp;
}
T temp = min/max;
return std::sqrt(temp*temp + 1) * max;
}
template <class T>
T Complex<T>::th() const {
T result = std::atan(m_b/m_a) + M_PI;
if (m_a >= 0) {
T a = m_a == 0 ? 0 : m_a;
result = std::atan(m_b/a);
}
if (result > M_PI + FLT_EPSILON) {
result = result - 2*M_PI;
}
return result;
}
template <class T>
Complex<T> Complex<T>::conjugate() const {
return Cartesian(m_a, -m_b);
}
template<typename T>
Expression::Type Complex<T>::type() const {
return Expression::Type::Complex;
}
template <class T>
Complex<T> * Complex<T>::clone() const {
return new Complex<T>(*this);
}
template<typename T>
T Complex<T>::toScalar() const {
if (m_b != 0) {
return NAN;
}
return m_a;
}
template <class T>
int Complex<T>::writeTextInBuffer(char * buffer, int bufferSize, int numberOfSignificantDigits) const {
return convertComplexToText(buffer, bufferSize, numberOfSignificantDigits, Preferences::sharedPreferences()->displayMode(), Preferences::sharedPreferences()->complexFormat(), Ion::Charset::MultiplicationSign);
}
template <class T>
bool Complex<T>::needParenthesisWithParent(const Expression * e) const {
switch (e->type()) {
case Type::Addition:
return m_a < 0.0 || (m_a == 0.0 && m_b < 0.0);
case Type::Subtraction:
case Type::Multiplication:
case Type::Opposite:
return m_a < 0.0 || m_b < 0.0 || (m_a != 0.0 && m_b != 0.0);
case Type::Factorial:
case Type::Power:
case Type::Division:
return m_a < 0.0 || m_b != 0.0;
default:
return false;
}
}
template <class T>
int Complex<T>::convertFloatToText(T f, char * buffer, int bufferSize,
int numberOfSignificantDigits, Expression::FloatDisplayMode mode) {
assert(numberOfSignificantDigits > 0);
if (mode == Expression::FloatDisplayMode::Default) {
return convertFloatToText(f, buffer, bufferSize, numberOfSignificantDigits, Preferences::sharedPreferences()->displayMode());
}
char tempBuffer[PrintFloat::k_maxFloatBufferLength];
int requiredLength = convertFloatToTextPrivate(f, tempBuffer, numberOfSignificantDigits, mode);
/* if the required buffer size overflows the buffer size, we first force the
* display mode to scientific and decrease the number of significant digits to
* fit the buffer size. If the buffer size is still to small, we only write
* the beginning of the float and truncate it (which can result in a non sense
* text) */
if (mode == Expression::FloatDisplayMode::Decimal && requiredLength >= bufferSize) {
requiredLength = convertFloatToTextPrivate(f, tempBuffer, numberOfSignificantDigits, Expression::FloatDisplayMode::Scientific);
}
if (requiredLength >= bufferSize) {
int adjustedNumberOfSignificantDigits = numberOfSignificantDigits - requiredLength + bufferSize - 1;
adjustedNumberOfSignificantDigits = adjustedNumberOfSignificantDigits < 1 ? 1 : adjustedNumberOfSignificantDigits;
requiredLength = convertFloatToTextPrivate(f, tempBuffer, adjustedNumberOfSignificantDigits, Expression::FloatDisplayMode::Scientific);
}
requiredLength = requiredLength < bufferSize ? requiredLength : bufferSize;
strlcpy(buffer, tempBuffer, bufferSize);
return requiredLength;
}
template <class T>
Complex<T>::Complex(T a, T b) :
m_a(a),
m_b(b)
{
}
template <class T>
ExpressionLayout * Complex<T>::privateCreateLayout(Expression::FloatDisplayMode floatDisplayMode, Expression::ComplexFormat complexFormat) const {
assert(floatDisplayMode != Expression::FloatDisplayMode::Default);
if (complexFormat == Expression::ComplexFormat::Polar) {
return createPolarLayout(floatDisplayMode);
}
return createCartesianLayout(floatDisplayMode);
}
template <class T>
Expression * Complex<T>::CreateDecimal(T f) {
if (std::isnan(f) || std::isinf(f)) {
return new Undefined();
}
int e = exponent(f);
int64_t mantissaf = f * std::pow((T)10, -e+PrintFloat::k_numberOfStoredSignificantDigits+1);
return new Decimal(Integer(mantissaf), e);
}
template <class T>
Expression * Complex<T>::shallowReduce(Context & context, AngleUnit angleUnit) {
Expression * a = CreateDecimal(m_a);
Expression * b = CreateDecimal(m_b);
Multiplication * m = new Multiplication(new Symbol(Ion::Charset::IComplex), b, false);
Addition * add = new Addition(a, m, false);
a->shallowReduce(context, angleUnit);
b->shallowReduce(context, angleUnit);
m->shallowReduce(context, angleUnit);
return replaceWith(add, true)->shallowReduce(context, angleUnit);
}
template<typename T>
template<typename U>
Complex<U> * Complex<T>::templatedApproximate(Context& context, Expression::AngleUnit angleUnit) const {
return new Complex<U>(Complex<U>::Cartesian((U)m_a, (U)m_b));
}
template <class T>
int Complex<T>::convertComplexToText(char * buffer, int bufferSize, int numberOfSignificantDigits, Expression::FloatDisplayMode displayMode, Expression::ComplexFormat complexFormat, char multiplicationSpecialChar) const {
assert(displayMode != Expression::FloatDisplayMode::Default);
int numberOfChars = 0;
if (std::isnan(m_a) || std::isnan(m_b) || std::isinf(m_a) || std::isinf(m_b)) {
return convertFloatToText(NAN, buffer, bufferSize, numberOfSignificantDigits, displayMode);
}
if (complexFormat == Expression::ComplexFormat::Polar) {
if (r() != 1 || th() == 0) {
numberOfChars = convertFloatToText(r(), buffer, bufferSize, numberOfSignificantDigits, displayMode);
if (r() != 0 && th() != 0 && bufferSize > numberOfChars+1) {
buffer[numberOfChars++] = multiplicationSpecialChar;
// Ensure that the string is null terminated even if buffer size is to small
buffer[numberOfChars] = 0;
}
}
if (r() != 0 && th() != 0) {
if (bufferSize > numberOfChars+3) {
buffer[numberOfChars++] = Ion::Charset::Exponential;
buffer[numberOfChars++] = '^';
buffer[numberOfChars++] = '(';
// Ensure that the string is null terminated even if buffer size is to small
buffer[numberOfChars] = 0;
}
numberOfChars += convertFloatToText(th(), buffer+numberOfChars, bufferSize-numberOfChars, numberOfSignificantDigits, displayMode);
if (bufferSize > numberOfChars+3) {
buffer[numberOfChars++] = multiplicationSpecialChar;
buffer[numberOfChars++] = Ion::Charset::IComplex;
buffer[numberOfChars++] = ')';
buffer[numberOfChars] = 0;
}
}
return numberOfChars;
}
if (m_a != 0 || m_b == 0) {
numberOfChars = convertFloatToText(m_a, buffer, bufferSize, numberOfSignificantDigits, displayMode);
if (m_b > 0 && !std::isnan(m_b) && bufferSize > numberOfChars+1) {
buffer[numberOfChars++] = '+';
// Ensure that the string is null terminated even if buffer size is to small
buffer[numberOfChars] = 0;
}
}
if (m_b != 1 && m_b != -1 && m_b != 0) {
numberOfChars += convertFloatToText(m_b, buffer+numberOfChars, bufferSize-numberOfChars, numberOfSignificantDigits, displayMode);
buffer[numberOfChars++] = multiplicationSpecialChar;
}
if (m_b == -1 && bufferSize > numberOfChars+1) {
buffer[numberOfChars++] = '-';
}
if (m_b != 0 && bufferSize > numberOfChars+1) {
buffer[numberOfChars++] = Ion::Charset::IComplex;
buffer[numberOfChars] = 0;
}
return numberOfChars;
}
template <class T>
int Complex<T>::convertFloatToTextPrivate(T f, char * buffer, int numberOfSignificantDigits, Expression::FloatDisplayMode mode) {
assert(mode != Expression::FloatDisplayMode::Default);
assert(numberOfSignificantDigits > 0);
/*if (std::isinf(f)) {
int currentChar = 0;
if (f < 0) {
buffer[currentChar++] = '-';
}
buffer[currentChar++] = 'i';
buffer[currentChar++] = 'n';
buffer[currentChar++] = 'f';
buffer[currentChar] = 0;
return currentChar;
}*/
if (std::isinf(f) || std::isnan(f)) {
int currentChar = 0;
buffer[currentChar++] = 'u';
buffer[currentChar++] = 'n';
buffer[currentChar++] = 'd';
buffer[currentChar++] = 'e';
buffer[currentChar++] = 'f';
buffer[currentChar] = 0;
return currentChar;
}
int exponentInBase10 = exponent(f);
Expression::FloatDisplayMode displayMode = mode;
if ((exponentInBase10 >= numberOfSignificantDigits || exponentInBase10 <= -numberOfSignificantDigits) && mode == Expression::FloatDisplayMode::Decimal) {
displayMode = Expression::FloatDisplayMode::Scientific;
}
// Number of char available for the mantissa
int availableCharsForMantissaWithoutSign = numberOfSignificantDigits + 1;
int availableCharsForMantissaWithSign = f >= 0 ? availableCharsForMantissaWithoutSign : availableCharsForMantissaWithoutSign + 1;
// Compute mantissa
/* The number of digits in an mantissa is capped because the maximal int64_t
* is 2^63 - 1. As our mantissa is an integer built from an int64_t, we assert
* that we stay beyond this threshold during computation. */
assert(availableCharsForMantissaWithoutSign - 1 < std::log10(std::pow(2.0f, 63.0f)));
int numberOfDigitBeforeDecimal = exponentInBase10 >= 0 || displayMode == Expression::FloatDisplayMode::Scientific ?
exponentInBase10 + 1 : 1;
T unroundedMantissa = f * std::pow((T)10.0, (T)(availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal));
T mantissa = std::round(unroundedMantissa);
/* if availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal
* is too big (or too small), mantissa is now inf. We handle this case by
* using logarithm function. */
if (std::isnan(mantissa) || std::isinf(mantissa)) {
mantissa = std::round(std::pow(10, std::log10(std::fabs(f))+(T)(availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal)));
mantissa = std::copysign(mantissa, f);
}
/* We update the exponent in base 10 (if 0.99999999 was rounded to 1 for
* instance)
* NB: the following if-condition would rather be:
* "exponent(unroundedMantissa) != exponent(mantissa)",
* however, unroundedMantissa can have a different exponent than expected
* (ex: f = 1E13, unroundedMantissa = 99999999.99 and mantissa = 1000000000) */
if (f != 0 && exponent(mantissa)-exponentInBase10 != availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal) {
exponentInBase10++;
}
// Update the display mode if the exponent changed
if ((exponentInBase10 >= numberOfSignificantDigits || exponentInBase10 <= -numberOfSignificantDigits) && mode == Expression::FloatDisplayMode::Decimal) {
displayMode = Expression::FloatDisplayMode::Scientific;
}
int decimalMarkerPosition = exponentInBase10 < 0 || displayMode == Expression::FloatDisplayMode::Scientific ?
1 : exponentInBase10+1;
decimalMarkerPosition = f < 0 ? decimalMarkerPosition+1 : decimalMarkerPosition;
// Correct the number of digits in mantissa after rounding
int mantissaExponentInBase10 = exponentInBase10 > 0 || displayMode == Expression::FloatDisplayMode::Scientific ? availableCharsForMantissaWithoutSign - 1 : availableCharsForMantissaWithoutSign + exponentInBase10;
if (std::floor(std::fabs((T)mantissa) * std::pow((T)10, - mantissaExponentInBase10)) > 0) {
mantissa = mantissa/10;
}
int numberOfCharExponent = exponentInBase10 != 0 ? std::log10(std::fabs((T)exponentInBase10)) + 1 : 1;
if (exponentInBase10 < 0){
// If the exponent is < 0, we need a additional char for the sign
numberOfCharExponent++;
}
// Supress the 0 on the right side of the mantissa
Integer dividend = Integer((int64_t)std::fabs(mantissa));
Integer quotient = Integer::Division(dividend, Integer(10)).quotient;
Integer digit = Integer::Subtraction(dividend, Integer::Multiplication(quotient, Integer(10)));
int minimumNumberOfCharsInMantissa = 1;
while (digit.isZero() && availableCharsForMantissaWithoutSign > minimumNumberOfCharsInMantissa &&
(availableCharsForMantissaWithoutSign > exponentInBase10+2 || displayMode == Expression::FloatDisplayMode::Scientific)) {
mantissa = mantissa/10;
availableCharsForMantissaWithoutSign--;
availableCharsForMantissaWithSign--;
dividend = quotient;
quotient = Integer::Division(dividend, Integer(10)).quotient;
digit = Integer::Subtraction(dividend, Integer::Multiplication(quotient, Integer(10)));
}
// Suppress the decimal marker if no fractional part
if ((displayMode == Expression::FloatDisplayMode::Decimal && availableCharsForMantissaWithoutSign == exponentInBase10+2)
|| (displayMode == Expression::FloatDisplayMode::Scientific && availableCharsForMantissaWithoutSign == 2)) {
availableCharsForMantissaWithSign--;
}
// Print mantissa
assert(availableCharsForMantissaWithSign < PrintFloat::k_maxFloatBufferLength);
PrintFloat::printBase10IntegerWithDecimalMarker(buffer, availableCharsForMantissaWithSign, Integer((int64_t)mantissa), decimalMarkerPosition);
if (displayMode == Expression::FloatDisplayMode::Decimal || exponentInBase10 == 0) {
buffer[availableCharsForMantissaWithSign] = 0;
return availableCharsForMantissaWithSign;
}
// Print exponent
assert(availableCharsForMantissaWithSign < PrintFloat::k_maxFloatBufferLength);
buffer[availableCharsForMantissaWithSign] = Ion::Charset::Exponent;
assert(numberOfCharExponent+availableCharsForMantissaWithSign+1 < PrintFloat::k_maxFloatBufferLength);
PrintFloat::printBase10IntegerWithDecimalMarker(buffer+availableCharsForMantissaWithSign+1, numberOfCharExponent, Integer(exponentInBase10), -1);
buffer[availableCharsForMantissaWithSign+1+numberOfCharExponent] = 0;
return (availableCharsForMantissaWithSign+1+numberOfCharExponent);
}
template <class T>
ExpressionLayout * Complex<T>::createPolarLayout(Expression::FloatDisplayMode floatDisplayMode) const {
char bufferBase[PrintFloat::k_maxFloatBufferLength+2];
int numberOfCharInBase = 0;
char bufferSuperscript[PrintFloat::k_maxFloatBufferLength+2];
int numberOfCharInSuperscript = 0;
if (std::isnan(r()) || (std::isnan(th()) && r() != 0)) {
numberOfCharInBase = convertFloatToText(NAN, bufferBase, PrintFloat::k_maxComplexBufferLength, Preferences::sharedPreferences()->numberOfSignificantDigits(), floatDisplayMode);
return new StringLayout(bufferBase, numberOfCharInBase);
}
if (r() != 1 || th() == 0) {
numberOfCharInBase = convertFloatToText(r(), bufferBase, PrintFloat::k_maxFloatBufferLength, Preferences::sharedPreferences()->numberOfSignificantDigits(), floatDisplayMode);
if (r() != 0 && th() != 0) {
bufferBase[numberOfCharInBase++] = Ion::Charset::MiddleDot;
}
}
if (r() != 0 && th() != 0) {
bufferBase[numberOfCharInBase++] = Ion::Charset::Exponential;
bufferBase[numberOfCharInBase] = 0;
}
if (r() != 0 && th() != 0) {
numberOfCharInSuperscript = convertFloatToText(th(), bufferSuperscript, PrintFloat::k_maxFloatBufferLength, Preferences::sharedPreferences()->numberOfSignificantDigits(), floatDisplayMode);
bufferSuperscript[numberOfCharInSuperscript++] = Ion::Charset::MiddleDot;
bufferSuperscript[numberOfCharInSuperscript++] = Ion::Charset::IComplex;
bufferSuperscript[numberOfCharInSuperscript] = 0;
}
if (numberOfCharInSuperscript == 0) {
return new StringLayout(bufferBase, numberOfCharInBase);
}
return new BaselineRelativeLayout(new StringLayout(bufferBase, numberOfCharInBase), new StringLayout(bufferSuperscript, numberOfCharInSuperscript), BaselineRelativeLayout::Type::Superscript);
}
template <class T>
ExpressionLayout * Complex<T>::createCartesianLayout(Expression::FloatDisplayMode floatDisplayMode) const {
char buffer[PrintFloat::k_maxComplexBufferLength];
int numberOfChars = convertComplexToText(buffer, PrintFloat::k_maxComplexBufferLength, Preferences::sharedPreferences()->numberOfSignificantDigits(), floatDisplayMode, Expression::ComplexFormat::Cartesian, Ion::Charset::MiddleDot);
return new StringLayout(buffer, numberOfChars);
}
template class Complex<float>;
template class Complex<double>;
template Complex<double>* Complex<double>::templatedApproximate<double>(Context&, Expression::AngleUnit) const;
template Complex<float>* Complex<double>::templatedApproximate<float>(Context&, Expression::AngleUnit) const;
template Complex<double>* Complex<float>::templatedApproximate<double>(Context&, Expression::AngleUnit) const;
template Complex<float>* Complex<float>::templatedApproximate<float>(Context&, Expression::AngleUnit) const;
}