calculation.cpp
6.65 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include "calculation.h"
#include "calculation_store.h"
#include <string.h>
#include <cmath>
using namespace Poincare;
namespace Calculation {
Calculation::Calculation() :
m_inputText(),
m_exactOutputText(),
m_approximateOutputText(),
m_input(nullptr),
m_inputLayout(nullptr),
m_exactOutput(nullptr),
m_exactOutputLayout(nullptr),
m_approximateOutput(nullptr),
m_approximateOutputLayout(nullptr)
{
}
Calculation::~Calculation() {
if (m_inputLayout != nullptr) {
delete m_inputLayout;
m_inputLayout = nullptr;
}
if (m_input != nullptr) {
delete m_input;
m_input = nullptr;
}
if (m_exactOutput != nullptr) {
delete m_exactOutput;
m_exactOutput = nullptr;
}
if (m_exactOutputLayout != nullptr) {
delete m_exactOutputLayout;
m_exactOutputLayout = nullptr;
}
if (m_approximateOutput != nullptr) {
delete m_approximateOutput;
m_approximateOutput = nullptr;
}
if (m_approximateOutputLayout != nullptr) {
delete m_approximateOutputLayout;
m_approximateOutputLayout = nullptr;
}
}
Calculation& Calculation::operator=(const Calculation& other) {
const char * otherInputText = other.m_inputText;
const char * otherExactOutputText = other.m_exactOutputText;
const char * otherApproximateOutputText = other.m_approximateOutputText;
reset();
strlcpy(m_inputText, otherInputText, sizeof(m_inputText));
strlcpy(m_exactOutputText, otherExactOutputText, sizeof(m_exactOutputText));
strlcpy(m_approximateOutputText, otherApproximateOutputText, sizeof(m_approximateOutputText));
return *this;
}
void Calculation::reset() {
m_inputText[0] = 0;
m_exactOutputText[0] = 0;
m_approximateOutputText[0] = 0;
tidy();
}
void Calculation::setContent(const char * c, Context * context, Expression * ansExpression) {
reset();
m_input = Expression::parse(c);
Expression::ReplaceSymbolWithExpression(&m_input, Symbol::SpecialSymbols::Ans, ansExpression);
/* We do not store directly the text enter by the user but its serialization
* to be able to compare it to the exact ouput text. */
m_input->writeTextInBuffer(m_inputText, sizeof(m_inputText));
m_exactOutput = Expression::ParseAndSimplify(m_inputText, *context);
m_exactOutput->writeTextInBuffer(m_exactOutputText, sizeof(m_exactOutputText));
m_approximateOutput = m_exactOutput->approximate<double>(*context);
m_approximateOutput->writeTextInBuffer(m_approximateOutputText, sizeof(m_approximateOutputText));
}
const char * Calculation::inputText() {
return m_inputText;
}
const char * Calculation::exactOutputText() {
return m_exactOutputText;
}
const char * Calculation::approximateOutputText() {
return m_approximateOutputText;
}
Expression * Calculation::input() {
if (m_input == nullptr) {
m_input = Expression::parse(m_inputText);
}
return m_input;
}
ExpressionLayout * Calculation::inputLayout() {
if (m_inputLayout == nullptr && input() != nullptr) {
m_inputLayout = input()->createLayout(Expression::FloatDisplayMode::Decimal, Expression::ComplexFormat::Cartesian);
}
return m_inputLayout;
}
bool Calculation::isEmpty() {
/* To test if a calculation is empty, we need to test either m_inputText or
* m_exactOutputText or m_approximateOutputText, the only three fields that
* are not lazy-loaded. We choose m_exactOutputText to consider that a
* calculation being added is still empty until the end of the method
* 'setContent'. Indeed, during 'setContent' method, 'ans' evaluation calls
* the evaluation of the last calculation only if the calculation being
* filled is not taken into account.*/
if (strlen(m_approximateOutputText) == 0) {
return true;
}
return false;
}
void Calculation::tidy() {
if (m_input != nullptr) {
delete m_input;
}
m_input = nullptr;
if (m_inputLayout != nullptr) {
delete m_inputLayout;
}
m_inputLayout = nullptr;
if (m_exactOutput != nullptr) {
delete m_exactOutput;
}
m_exactOutput = nullptr;
if (m_exactOutputLayout != nullptr) {
delete m_exactOutputLayout;
}
m_exactOutputLayout = nullptr;
if (m_approximateOutput != nullptr) {
delete m_approximateOutput;
}
m_approximateOutput = nullptr;
if (m_approximateOutputLayout != nullptr) {
delete m_approximateOutputLayout;
}
m_approximateOutputLayout = nullptr;
}
Expression * Calculation::exactOutput(Context * context) {
if (m_exactOutput == nullptr) {
/* To ensure that the expression 'm_exactOutput' is a simplified, we
* call 'ParseAndSimplify'. */
m_exactOutput = Expression::ParseAndSimplify(m_exactOutputText, *context);
}
return m_exactOutput;
}
ExpressionLayout * Calculation::exactOutputLayout(Context * context) {
if (m_exactOutputLayout == nullptr && exactOutput(context) != nullptr) {
m_exactOutputLayout = exactOutput(context)->createLayout();
}
return m_exactOutputLayout;
}
Expression * Calculation::approximateOutput(Context * context) {
if (m_approximateOutput == nullptr) {
/* To ensure that the expression 'm_output' is a matrix or a complex, we
* call 'evaluate'. */
Expression * exp = Expression::parse(m_approximateOutputText);
if (exp != nullptr) {
m_approximateOutput = exp->approximate<double>(*context);
delete exp;
} else {
m_approximateOutput = new Complex<double>(Complex<double>::Float(NAN));
}
}
return m_approximateOutput;
}
ExpressionLayout * Calculation::approximateOutputLayout(Context * context) {
if (m_approximateOutputLayout == nullptr && approximateOutput(context) != nullptr) {
m_approximateOutputLayout = approximateOutput(context)->createLayout();
}
return m_approximateOutputLayout;
}
bool Calculation::shouldDisplayApproximateOutput(Context * context) {
if (strcmp(m_exactOutputText, m_approximateOutputText) == 0) {
return true;
}
if (strcmp(m_exactOutputText, m_inputText) == 0) {
return true;
}
return input()->isApproximate(*context);
}
bool Calculation::exactAndApproximateDisplayedOutputsAreEqual(Poincare::Context * context) {
char buffer[k_printedExpressionSize];
approximateOutput(context)->writeTextInBuffer(buffer, k_printedExpressionSize, Preferences::sharedPreferences()->numberOfSignificantDigits());
/* Warning: we cannot use directly the m_approximateOutputText but we have to
* re-serialize the approximateOutput because the number of stored
* significative numbers and the number of displayed significative numbers
* are not identical. (For example, 0.000025 might be displayed "0.00003"
* which requires in an approximative equal) */
Expression * approximateOutput = Expression::ParseAndSimplify(buffer, *context);
bool isEqual = approximateOutput->isIdenticalTo(exactOutput(context));
delete approximateOutput;
return isEqual;
}
}