series.cc
113 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
// -*- mode:C++ ; compile-command: "g++-3.4 -I.. -g -c series.cc -DIN_GIAC -DHAVE_CONFIG_H " -*-
#include "giacPCH.h"
/*
* Copyright (C) 2000,14 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
using namespace std;
#include <stdexcept>
#include <cmath>
#include "derive.h"
#include "subst.h"
#include "series.h"
#include "symbolic.h"
#include "unary.h"
#include "usual.h"
#include "poly.h"
#include "sym2poly.h"
#include "tex.h"
#include "prog.h"
#include "misc.h"
#include "intg.h"
#include "maple.h"
#include "lin.h"
#include "plot.h"
#include "giacintl.h"
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
static int mrv_begin_order=2;
static bool taylor_(const gen & f_x,const gen & x,const gen & lim_point,int ordre,vecteur & v,GIAC_CONTEXT){
gen current_derf(f_x),value,factorielle(1);
for (int i=0;;++i){
value=subst(current_derf,x,lim_point,false,contextptr);
if (is_undef(value))
return false;
v.push_back(ratnormal(rdiv(value,factorielle,contextptr),contextptr));
if (i==ordre){
v.push_back(undef);
return true;
}
factorielle = factorielle * gen(i+1);
current_derf=ratnormal(derive(current_derf,x,contextptr),contextptr);
if (is_undef(current_derf))
return false;
}
v.dbgprint();
return false;
}
bool taylor(const gen & f_x,const gen & x,const gen & lim_point,int ordre,vecteur & v,GIAC_CONTEXT){
int i=series_flags(contextptr);
series_flags(contextptr)=series_flags(contextptr) | (1<<7) ;
bool b=taylor_(f_x,x,lim_point,ordre,v,contextptr);
series_flags(i,contextptr);
return b;
}
// direction is always ignored for taylor, but might not
// for generic series_expansion
// shift coeff =0 for taylor
gen taylor(const gen & lim_point,int ordre,const unary_function_ptr & f,int direction,gen & shift_coeff,GIAC_CONTEXT){
// Special handling for sin/cos expansion inside limit
if ( is_inf(lim_point) && ( (f==at_cos) || (f==at_sin) ) ){
gen g=bounded_function(contextptr);
/*
int i=sincosinf.size();
sincosinf.push_back(gen(" sincosinf"+print_INT_(i)));
gen g=sincosinf.back();
if (!g._IDNTptr->value){
vecteur minusone_one(2);
minusone_one[0]=minus_one;
minusone_one[1]=plus_one;
gen v(vecteur(1,gen(minusone_one,_LINE__VECT)));
gen d(_DOUBLE_);
d.subtype=_INT_TYPE;
gen aa(makevecteur(d,v,vecteur(0)),_ASSUME__VECT);
g._IDNTptr->value=new gen(aa);
}
*/
return vecteur(1,g);
}
// if preprocessing is needed for f, series_expansion for ordre==-1 should
// push back in a global vector f and it's substitution
if (ordre<0)
return 0;
shift_coeff=0;
if (is_undef(lim_point) || is_inf(lim_point)){
invalidserieserr(gettext("non tractable function ")+(f.ptr()->print(contextptr)+(" at "+lim_point.print(contextptr))));
return undef;
}
identificateur x(" ");
vecteur v;
gen fx=f(x,contextptr);
if (taylor(fx,x,lim_point,ordre,v,contextptr))
return v;
else
return undef;
}
gen porder(const sparse_poly1 & a){
if (a.empty())
return plus_inf;
sparse_poly1::const_iterator a_end=a.end()-1;
if (is_undef(a_end->coeff))
return a_end->exponent;
else
return plus_inf;
}
bool sparse_poly12vecteur(const sparse_poly1 & p,vecteur & v,int & shift){
sparse_poly1::const_iterator it=p.begin(),itend=p.end();
v.clear();
if (p.empty())
return true;
if (p.back().exponent.type!=_INT_)
return false;
int n1=p.front().exponent.val,n2=p.back().exponent.val;
if (n1>n2 || (n2-n1)+1<0) // if n==RAND_MAX, n+1<0
return false;
if (n1<0)
shift=n1;
else
shift=n1=0;
v.resize(n2-n1+1);
for (;it!=itend;++it){
if (it->exponent.type!=_INT_)
return false;
int m=it->exponent.val;
if (m<n1 || m>n2)
return false;
v[m-n1]=it->coeff;
}
reverse(v.begin(),v.end());
return true;
}
void vecteur2sparse_poly1(const vecteur & v,sparse_poly1 & p){
p.clear();
vecteur::const_iterator it=v.begin(),itend=v.end();
p.reserve(itend-it);
for (int i=0;it!=itend;++i,++it){
if (!is_zero(*it))
p.push_back(monome(*it,i));
}
}
sparse_poly1 gen2spol1(const gen &g){
if (g.type!=_VECT)
return sparse_poly1(1,monome(g,0));
sparse_poly1 p;
vecteur2sparse_poly1(*g._VECTptr,p);
return p;
}
sparse_poly1 vecteur2sparse_poly1(const vecteur & v){
sparse_poly1 p;
vecteur2sparse_poly1(v,p);
return p;
}
gen spol12gen(const sparse_poly1 & p,GIAC_CONTEXT){
string t;
t = t+series_variable_name(contextptr);
identificateur tt(t);
gen T(tt),remains;
gen g=sparse_poly12gen(p,T,remains,false);
if (!is_zero(remains))
g += remains*order_size(T,contextptr);
return g;
}
static gen spol12gen(const gen & coeff,const gen & x){
if (coeff.type==_VECT){
vecteur v=*coeff._VECTptr;
int s=int(v.size());
for (int i=0;i<s;++i){
v[i]=spol12gen(v[i],x);
}
return gen(v,coeff.subtype);
}
if (coeff.type==_SPOL1){
gen remains=0;
return sparse_poly12gen(*coeff._SPOL1ptr,x,remains,true)+remains;
}
if (coeff.type!=_SYMB)
return coeff;
return symbolic(coeff._SYMBptr->sommet,spol12gen(coeff._SYMBptr->feuille,x));
}
gen sparse_poly12gen(const sparse_poly1 & p,const gen & x,gen & remains,bool with_order_size){
gen res;
remains=0;
sparse_poly1::const_iterator it=p.begin(),itend=p.end();
for (;it!=itend;++it){
gen coeff=it->coeff;
if (is_undef(coeff)){
remains=pow(x,it->exponent,context0); // ok
if (with_order_size)
return res+remains*order_size(x,context0);
else
return res;
}
coeff=spol12gen(coeff,x);
res = res + coeff * pow(x,it->exponent,context0); // ok
}
return res;
}
bool ptruncate(sparse_poly1 & p,const gen & ordre,GIAC_CONTEXT){
if ( (series_flags(contextptr) & 0x2) || p.empty() ){
sparse_poly1::iterator it=p.begin(),itend=p.end();
gen first=it->exponent;
for (;it!=itend;++it){
if (is_undef(it->coeff))
return true;
if (ck_is_strictly_greater(it->exponent-first,ordre,contextptr)){
it->coeff=undef;
p.erase(it+1,itend);
return true;
}
}
}
return true;
}
void poly_truncate(sparse_poly1 & p,int ordre,GIAC_CONTEXT){
if ( (series_flags(contextptr) & 0x2) || p.empty() ){
sparse_poly1::iterator it=p.begin(),itend=p.end();
for (;it!=itend;++it){
if (is_undef(it->coeff))
return ;
if (ck_is_strictly_greater(it->exponent,ordre,contextptr)){
it->coeff=undef;
p.erase(it+1,itend);
return ;
}
}
}
return ;
}
static gen remove_lnexp(const gen & e,GIAC_CONTEXT);
bool padd(const sparse_poly1 & a,const sparse_poly1 &b, sparse_poly1 & res,GIAC_CONTEXT){
// Series addition
if (a.empty()){
if (&b!=&res)
res=b;
return true;
}
if (b.empty()){
if (&a!=&res)
res=a;
return true;
}
sparse_poly1::const_iterator a_cur,a_end,b_cur,b_end;
sparse_poly1 temp_a,temp_b;
if (&res==&a){ // must make a copy of a
temp_a=a;
a_cur=temp_a.begin();
a_end=temp_a.end();
}
else {
a_cur=a.begin();
a_end=a.end();
}
if (&res==&b){ // must make a copy of b
temp_b=b;
b_cur=temp_b.begin();
b_end=temp_b.end();
}
else {
b_cur=b.begin();
b_end=b.end();
}
res.clear();
res.reserve((a_end-a_cur)+(b_end-b_cur));
for (;(a_cur!=a_end) && (b_cur!=b_end) ;) {
gen a_pow=a_cur->exponent;
gen b_pow=b_cur->exponent;
// a and b are non-empty, compare powers
if (ck_is_strictly_greater(b_pow,a_pow,contextptr)) {
// get coefficient from a
res.push_back(*a_cur);
if (is_undef(a_cur->coeff)){
return true;
}
++a_cur;
continue;
}
if (ck_is_strictly_greater(a_pow,b_pow,contextptr)) {
// get coefficient from b
res.push_back(*b_cur);
if (is_undef(b_cur->coeff)){
return true;
}
++b_cur;
continue;
}
// Add coefficient of a and b
gen sum=a_cur->coeff+b_cur->coeff;
if (sum.type>_POLY && sum.type!=_FRAC &&(res.empty() || (series_flags(contextptr) & 0x1) ) ){
//cerr << sum << " ";
sum=recursive_normal(remove_lnexp(sum,contextptr),contextptr);
//cerr << sum << endl;
}
// gen sum=(a_cur->coeff+b_cur->coeff);
if (!is_zero(sum))
res.push_back(monome(sum,a_pow));
if (is_undef(sum)){
return true;
}
++a_cur;
++b_cur;
}
for (;a_cur!=a_end;++a_cur)
res.push_back(*a_cur);
for (;b_cur!=b_end;++b_cur)
res.push_back(*b_cur);
return true;
}
sparse_poly1 spadd(const sparse_poly1 & a,const sparse_poly1 &b,GIAC_CONTEXT){
sparse_poly1 res;
padd(a,b,res,contextptr);
return res;
}
sparse_poly1 spsub(const sparse_poly1 & a,const sparse_poly1 &b,GIAC_CONTEXT){
sparse_poly1 res(b);
pneg(b,res,contextptr);
padd(a,res,res,contextptr);
return res;
}
bool pmul(const sparse_poly1 & a,const gen & b_orig, sparse_poly1 & res,GIAC_CONTEXT){
gen b(b_orig);
if (&a==&res){
if (is_one(b_orig)) return true;
sparse_poly1::iterator it=res.begin(),itend=res.end();
for (;it!=itend;++it){
gen g=it->coeff * b;
if (g.type>_POLY && g.type!=_FRAC)
g=ratnormal(g,contextptr) ;
it->coeff = g;
}
return true;
}
sparse_poly1::const_iterator it=a.begin(),itend=a.end();
res.clear();
res.reserve(itend-it);
for (;it!=itend;++it)
res.push_back(monome(ratnormal(it->coeff * b,contextptr), it->exponent));
return true;
}
bool pmul(const gen & b, const sparse_poly1 & a,sparse_poly1 & res,GIAC_CONTEXT){
return pmul(a,b,res,contextptr);
}
sparse_poly1 spmul(const sparse_poly1 & a,const gen &b,GIAC_CONTEXT){
sparse_poly1 res;
if (!pmul(a,b,res,contextptr))
res=sparse_poly1(1,monome(1,undef));
return res;
}
sparse_poly1 spmul(const gen & a,const sparse_poly1 &b,GIAC_CONTEXT){
sparse_poly1 res;
if (!pmul(a,b,res,contextptr))
res=sparse_poly1(1,monome(1,undef));
return res;
}
struct monome_less {
monome_less() {}
bool operator () (const monome & a,const monome & b){
return ck_is_strictly_greater(b.exponent,a.exponent,context0);
}
};
struct symb_size_less_t {
symb_size_less_t() {}
bool operator () (const gen &a,const gen &b){
return symb_size_less(a,b);
}
};
bool pmul(const sparse_poly1 & celuici,const sparse_poly1 &other, sparse_poly1 & final_seq,bool n_truncate,const gen & n_valuation,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
int asize=int(celuici.size());
int bsize=int(other.size());
if ( (!asize) || (!bsize) ) {
final_seq.clear();
return true;
}
if (asize==1){
gen temp(celuici.front().coeff);
pshift(other,celuici.front().exponent,final_seq,contextptr);
// COUT << other << "Shifted" << final_seq << endl;
return pmul(final_seq,temp,final_seq,contextptr);
// COUT << other << "Multiplied" << final_seq << endl;
}
if (bsize==1){
gen temp(other.front().coeff);
pshift(celuici,other.front().exponent,final_seq,contextptr);
return pmul(final_seq,temp,final_seq,contextptr);
}
sparse_poly1 new_seq;
new_seq.reserve(asize*bsize);
// General sparse series multiplication: complexity is N*M*ln(N*M)
// Storage capacity 2*N*M expair
// That's much more than O(N+M) for dense poly *but*
// it works for non integer powers
// COUT << celuici << "pmul" << other << endl;
// First find the order product
gen a_max = porder(celuici);
gen b_max = porder(other);
gen a_min = celuici.front().exponent;
gen b_min = other.front().exponent;
gen c_min = normal(a_min + b_min,contextptr);
gen c_max = min(normal(a_min + b_max,contextptr),normal(b_min + a_max,contextptr),contextptr);
if (c_max.type==_SYMB && c_max._SYMBptr->sommet==at_max)
return false; // setsizeerr(gettext("series.cc/pmul"));
// compute all products term by term, with optimization for dense poly
// (coeff are sorted for dense poly)
sparse_poly1::const_iterator itb = other.begin(),itbend = other.end();
sparse_poly1::const_iterator ita = celuici.begin(),ita_end=celuici.end();
sparse_poly1::const_iterator itabegin = ita;
gen old_pow=normal(ita->exponent+itb->exponent,contextptr);
gen res(0);
for ( ; ita!=ita_end; ++ita ){
sparse_poly1::const_iterator itacur=ita;
sparse_poly1::const_iterator itbcur=itb;
for (;;) {
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
gen cur_pow=normal(itacur->exponent+itbcur->exponent,contextptr);
if ((n_truncate && ck_is_strictly_greater(n_valuation,cur_pow,contextptr)) || ck_is_greater(c_max,cur_pow,contextptr)){
if (cur_pow!=old_pow){
new_seq.push_back( monome(res,old_pow ));
res=itacur->coeff * itbcur->coeff;
old_pow=cur_pow;
}
else
res=res+ itacur->coeff * itbcur->coeff;
}
if (itacur==itabegin)
break;
--itacur;
++itbcur;
if (itbcur==itbend)
break;
}
}
--ita;
++itb;
for ( ; itb!=itbend;++itb){
sparse_poly1::const_iterator itacur=ita;
sparse_poly1::const_iterator itbcur=itb;
for (;;) {
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
gen cur_pow=normal(itacur->exponent + itbcur->exponent,contextptr);
if ((n_truncate && ck_is_strictly_greater(n_valuation,cur_pow,contextptr)) || ck_is_greater(c_max,cur_pow,contextptr)){
if (cur_pow!=old_pow){
new_seq.push_back( monome(res ,old_pow ));
res= itacur->coeff * itbcur->coeff ;
old_pow=cur_pow;
}
else
res=res+ itacur->coeff * itbcur->coeff ;
}
if (itacur==itabegin)
break;
--itacur;
++itbcur;
if (itbcur==itbend)
break;
}
}
new_seq.push_back( monome(res ,old_pow ));
// COUT << new_seq << endl;
// sort by asc. power
sort( new_seq.begin(),new_seq.end(),monome_less());
// COUT << "Sorted" << new_seq << endl;
// add terms with same power
sparse_poly1::const_iterator it=new_seq.begin();
sparse_poly1::const_iterator itend=new_seq.end();
final_seq.clear();
final_seq.reserve(itend-it);
while (it!=itend){
gen res=it->coeff;
gen pow=it->exponent;
if (is_undef(res)){
final_seq.push_back(*it);
return true;
}
++it;
while ( (it!=itend) && (it->exponent==pow)){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
if (is_undef(it->coeff)){
final_seq.push_back(*it);
return true;
}
res=res+it->coeff;
++it;
}
if (series_flags(contextptr) & 0x1)
res=recursive_normal(res,contextptr);
if (!is_zero(res))
final_seq.push_back(monome(res, pow));
}
if (c_max!=plus_inf)
final_seq.push_back(monome(undef, c_max));
return true;
//COUT << final_seq.back().coeff << endl;
//return true;
}
sparse_poly1 spmul(const sparse_poly1 & a,const sparse_poly1 &b,GIAC_CONTEXT){
sparse_poly1 res;
if (!pmul(a,b,res,false,0,contextptr))
res=sparse_poly1(1,monome(1,undef));
return res;
}
bool pneg(const sparse_poly1 & a,sparse_poly1 & res,GIAC_CONTEXT){
if (&a==&res){
sparse_poly1::iterator it=res.begin(),itend=res.end();
for (;it!=itend;++it)
it->coeff=-it->coeff;
return true;
}
sparse_poly1::const_iterator it=a.begin(),itend=a.end();
res.clear();
res.reserve(itend-it);
for (;it!=itend;++it)
res.push_back(monome(-it->coeff, it->exponent));
return true;
}
sparse_poly1 spneg(const sparse_poly1 & a,GIAC_CONTEXT){
sparse_poly1 res;
pneg(a,res,contextptr);
return res;
}
bool pshift(const sparse_poly1 & a,const gen & b_orig, sparse_poly1 & res,GIAC_CONTEXT){
if (is_zero(b_orig)){
if (&a!=&res)
res=a;
return true;
}
gen b(b_orig);
if (&a==&res){
sparse_poly1::iterator it=res.begin(),itend=res.end();
for (;it!=itend;++it)
it->exponent = normal(it->exponent + b,contextptr);
return true;
}
sparse_poly1::const_iterator it=a.begin(),itend=a.end();
res.clear();
res.reserve(itend-it);
for (;it!=itend;++it)
res.push_back(monome(it->coeff , normal(it->exponent +b,contextptr)));
return true;
}
// ascending order division
bool pdiv(const sparse_poly1 & a,const sparse_poly1 &b_orig, sparse_poly1 & res,int ordre_orig,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
//if (debug_infolevel) CERR << CLOCK()*1e-6 << " pdiv begin" <<endl;
sparse_poly1 b(b_orig);
ptruncate(b,ordre_orig,contextptr);
if (b.empty()){
// divisionby0err(a);
return false;
}
gen b0=b.front().coeff;
if (is_undef(b0)){
if (&b!=&res)
res=b;
return true;
}
if (b.size()==1){
pshift(a,-b.front().exponent,res,contextptr);
return pdiv(res,b0,res,contextptr);
}
// COUT << a << "/" << b << endl;
if (&res==&b){
// setsizeerr(gettext("series.cc/pdiv"));
return false;
}
gen e0=b.front().exponent;
gen ordre=min(min(porder(a),porder(b)-e0,contextptr),ordre_orig,contextptr);
if (ordre==plus_inf)
ordre=series_default_order(contextptr);
// COUT << ordre << endl;
if (ordre.type==_SYMB && ordre._SYMBptr->sommet==at_max)
return false; // setsizeerr(gettext("series.cc/pdiv"));
sparse_poly1 rem(a);
res.clear();
sparse_poly1 bshift;
gen q_cur,e_cur; // current quotient, current exponent
for (;;){
if (is_undef(rem.front().coeff)){
res.push_back(monome(undef,rem.front().exponent-e0));
// COUT << "=" << res << endl;
return true;
}
q_cur=rdiv(rem.front().coeff,b0,contextptr);
e_cur=rem.front().exponent-e0;
res.push_back(monome(q_cur,e_cur));
pshift(b,e_cur,bshift,contextptr);
sparse_poly1::iterator it=bshift.begin(),itend=bshift.end();
for (;it!=itend;++it){
if (is_undef(it->coeff))
break;
if (ck_is_strictly_greater(it->exponent,ordre,contextptr)){
it->coeff=undef;
bshift.erase(it+1,itend);
break;
}
}
if (!pmul(-q_cur,bshift,bshift,contextptr))
return false;
padd(rem,bshift,rem,contextptr);
// COUT << rem.front().exponent << " " << e0+ordre << endl;
if (ck_is_strictly_greater(rem.front().exponent,a.front().exponent+ordre,contextptr)){
res.push_back(monome(undef,a.front().exponent+ordre+1-e0));
return true;
}
}
return true;
}
sparse_poly1 spdiv(const sparse_poly1 & a,const sparse_poly1 &b,GIAC_CONTEXT){
sparse_poly1 res;
gen og=min(porder(a),porder(b),contextptr);
int o=series_default_order(contextptr);
if (og.type==_INT_)
o=og.val;
if (!pdiv(a,b,res,o,contextptr))
res=sparse_poly1(1,monome(1,undef));
return res;
}
bool pdiv(const sparse_poly1 & a,const gen & b_orig, sparse_poly1 & res,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
if (is_zero(b_orig))
return false; // divisionby0err(a);
if (is_one(b_orig)){
if (&a!=&res)
res=a;
return true;
}
gen b(b_orig);
if (&a==&res){
sparse_poly1::iterator it=res.begin(),itend=res.end();
for (;it!=itend;++it){
it->coeff=rdiv(it->coeff, b,contextptr);
if (series_flags(contextptr) & 0x1)
it->coeff=normal(it->coeff,contextptr);
}
// it->coeff=rdiv(it->coeff, b,contextptr);
return true;
}
sparse_poly1::const_iterator it=a.begin(),itend=a.end();
res.clear();
res.reserve(itend-it);
gen tmp;
for (;it!=itend;++it){
tmp=rdiv(it->coeff,b,contextptr);
if (series_flags(contextptr) & 0x1)
tmp=normal(tmp,contextptr);
res.push_back(monome(tmp , it->exponent));
}
// res.push_back(monome(rdiv(it->coeff,b,contextptr) , it->exponent));
return true;
}
sparse_poly1 spdiv(const sparse_poly1 & a,const gen &b,GIAC_CONTEXT){
sparse_poly1 res;
if (!pdiv(a,b,res,contextptr))
res=sparse_poly1(1,undef);
return res;
}
// v is replaced by e*v where e*v has no denominator
void lcmdeno(vecteur &v,gen & e,GIAC_CONTEXT){
if (v.empty()){
e=1;
return;
}
if (is_undef(v.front())){
v.erase(v.begin());
lcmdeno(v,e,contextptr);
v.insert(v.begin(),undef);
return;
}
vecteur l;
lvar(v,l);
//int l_size(l.size());
vecteur w;
w.reserve(2*v.size());
gen common=1,f,num,den;
// compute lcm of denominators in common
vecteur::iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (is_integer(*it)){
num=*it; den=1;
}
else {
if (it->type==_FRAC && is_integer(it->_FRACptr->num) && is_integer(it->_FRACptr->den))
f=*it;
else
f=e2r(*it,l,contextptr);
fxnd(f,num,den);
}
w.push_back(num);
w.push_back(den);
// replace common by lcm of common and den
#ifndef USE_GMP_REPLACEMENTS
if (common.type==_ZINT && common.ref_count()==1 && is_integer(den)){
if (den.type==_ZINT)
mpz_lcm(*common._ZINTptr,*common._ZINTptr,*den._ZINTptr);
else
mpz_lcm_ui(*common._ZINTptr,*common._ZINTptr,absint(den.val));
}
else
common = lcm(common,den);
#else
common = lcm(common,den);
#endif
}
// compute e and recompute v
e=r2sym(common,l,contextptr);
it=v.begin();
for (int i=0;it!=itend;++it,i=i+2){
if (it->type==_FRAC && is_integer(it->_FRACptr->num) && is_integer(it->_FRACptr->den) && is_integer(common))
*it=w[i]*rdiv(common,w[i+1],contextptr);
else
*it=r2sym(w[i]*rdiv(common,w[i+1],contextptr),l,contextptr);
}
}
void lcmdeno_converted(vecteur &v,gen & e,GIAC_CONTEXT){
if (v.empty()){
e=1;
return;
}
if (is_undef(v.front())){
v.erase(v.begin());
lcmdeno_converted(v,e,contextptr);
v.insert(v.begin(),undef);
return;
}
vecteur w;
w.reserve(2*v.size());
gen common=1,f,num,den;
// compute lcm of denominators in common
vecteur::iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it){
fxnd(*it,num,den);
w.push_back(num);
w.push_back(den);
// replace common by lcm of common and den
common = lcm(common,den);
}
// compute e and recompute v
e=common;
it=v.begin();
for (int i=0;it!=itend;++it,i=i+2)
*it=w[i]*rdiv(common,w[i+1],contextptr);
}
void lcmdeno(sparse_poly1 &v,gen & e,GIAC_CONTEXT){
if (v.empty()){
e=1;
return;
}
if (is_undef(v.back().coeff)){
monome last=v.back();
v.pop_back();
lcmdeno(v,e,contextptr);
v.push_back(last);
return;
}
vecteur l;
lvar(v,l);
int l_size(int(l.size()));
vector<gen> w;
w.reserve(2*l_size);
gen common=1,num,den,f;
// compute lcm of denominators in common
sparse_poly1::iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it){
f=e2r(it->coeff,l,contextptr);
fxnd(f,num,den);
w.push_back(num);
w.push_back(den);
common=lcm(common,den);
}
// compute e and recompute v
e=r2sym(common,l,contextptr);
it=v.begin();
for (int i=0;it!=itend;++it,i=i+2){
it->coeff=r2sym(w[i]*rdiv(common,w[i+1],contextptr),l,contextptr);
}
}
bool pcompose(const vecteur & v,const sparse_poly1 & p, sparse_poly1 & res,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
if (v.empty()){
res.clear();
return true;
}
if ( p.empty() ){
res.clear();
if (!is_zero(v.front()))
res.push_back(monome(v.front(),0));
return true;
}
// Conversion of p and v to "internal" polynomial form
vecteur l; // will contain the list of variables common to v and p
alg_lvar(v,l);
alg_lvar(p,l);
// int l_size(l.size());
gen plcm=plus_one,vlcm=plus_one,f,num,den;
// compute lcm of denominators of p in plcm
sparse_poly1::const_iterator its=p.begin(),itsend=p.end();
vecteur ptemp;
ptemp.reserve(2*(itsend-its));
for (;its!=itsend;++its){
f=e2r(its->coeff,l,contextptr);
fxnd(f,num,den);
ptemp.push_back(num);
ptemp.push_back(den);
plcm=lcm(den,plcm);
}
// compute pcopy such that pcopy/plcm=p
its=p.begin();
sparse_poly1 pcopy;
pcopy.reserve(itsend-its);
for (int i=0;its!=itsend;++its,i=i+2){
num=ptemp[i]*rdiv(plcm,ptemp[i+1],contextptr);
pcopy.push_back(monome(num,its->exponent));
}
// do the same thing on v
vecteur w;
// compute lcm of denominators in common
vecteur::const_iterator it=v.begin(),itend=v.end();
w.reserve(2*(itend-it));
for (;it!=itend;++it){
f=e2r(*it,l,contextptr);
fxnd(f,num,den);
w.push_back(num);
w.push_back(den);
vlcm=lcm(vlcm,den);
}
// compute vcopy
it=v.begin();
vecteur vcopy;
vcopy.reserve(itend-it);
for (int i=0;it!=itend;++it,i=i+2)
vcopy.push_back(w[i]*rdiv(vlcm,w[i+1],contextptr));
reverse(vcopy.begin(),vcopy.end());
if (vcopy.empty() ){
res=sparse_poly1(1,monome(undef,minus_inf));
return true;
}
// COUT << "compose " << vcopy << " with " << pcopy << endl;
it=vcopy.begin(),itend=vcopy.end();
int n=int(itend-it)-1;
bool n_truncate=false;
gen n_valuation;
if (is_undef(*it)){
++it;
n_truncate=true;
n_valuation=gen(n)*p.front().exponent;
// add undef order term
gen cur_ordre=porder(p);
// compare cur_ordre with n*valuation(pcopy)
if ( (cur_ordre==plus_inf) || (ck_is_strictly_greater(cur_ordre,n_valuation,contextptr)) ){
// remove greater order terms from pcopy
for (;!pcopy.empty();){
if (ck_is_strictly_greater(pcopy.back().exponent,n_valuation,contextptr))
pcopy.pop_back();
else
break;
}
// insert undef
if (pcopy.empty() || (!is_undef(pcopy.back().coeff)) )
pcopy.push_back(monome(undef,n_valuation));
}
}
// Skip 0 coeffs in the reverse list vcopy
for (;it!=itend;++it){
if (!is_zero(*it))
break;
}
if (it==itend){
res=sparse_poly1(1,monome(undef));
return true;
}
res=sparse_poly1(1,monome(*it));
// COUT << res << endl;
++it;
if (it==itend && is_undef(pcopy.back().coeff))
res.push_back(monome(undef,min(n_valuation,pcopy.back().exponent,contextptr)));
gen plcmn=plus_one;
for (;it!=itend;++it){
plcmn=plcmn*plcm;
// COUT << res << "*" << pcopy << endl ;
if (!pmul(res,pcopy,res,n_truncate,n_valuation,contextptr))
return false;
if (n_truncate){ // Remove all terms of order > n_valuation
sparse_poly1::iterator sit=res.begin(),sitend=res.end();
for (;sit!=sitend;++sit){
if (ck_is_greater(sit->exponent,n_valuation,contextptr)){
res.erase(sit,sitend);
res.push_back(monome(undef,n_valuation));
break;
}
}
}
// COUT << res << endl;
if (!is_zero(*it))
padd(res,sparse_poly1(1,monome(*it*plcmn)),res,contextptr);
// COUT << res << endl;
}
den=vlcm*plcmn;
// back conversion from res to symbolic form
sparse_poly1::iterator sit=res.begin(),sitend=res.end();
for (;sit!=sitend;++sit){
num=den;
sit->coeff=r2sym(fraction(sit->coeff,num).normal(),l,contextptr);
}
return true;
}
bool ppow(const sparse_poly1 & base,int m,int ordre,sparse_poly1 & res,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
if (m==0){
res.clear();
return true;
}
if (m==1){
if (&base!=&res)
res=base;
return true;
}
sparse_poly1 temp;
if (!pmul(base,base,temp,true,ordre,contextptr))
return false;
ptruncate(temp,ordre,contextptr);
if (m%2){
if (!ppow(temp,m/2,ordre,temp,contextptr) ||
!pmul(temp,base,res,true,ordre,contextptr))
return false;
}
else {
if (!ppow(temp,m/2,ordre,res,contextptr))
return false;
}
ptruncate(res,ordre,contextptr);
return true;
}
// constant power, otherwise use exp(ln)
bool ppow(const sparse_poly1 & base,const gen & e,int ordre,int direction,sparse_poly1 & res,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
if (base.size()==1){
gen basepow;
if (e.type==_FRAC && e._FRACptr->den==2 && is_positive(-base.front().coeff,contextptr))
basepow=pow(cst_i,e._FRACptr->num,contextptr)*pow(-base.front().coeff,e,contextptr);
else
basepow=pow(base.front().coeff,e,contextptr);
if (&base==&res){
res.front().coeff=basepow;
res.front().exponent=res.front().exponent*e;
}
else
res=sparse_poly1(1,monome(basepow,base.front().exponent*e));
return true;
}
gen n=porder(base);
if ((n==plus_inf) && (e.type==_INT_) && (e.val>=0) ){ // exact power
int m=e.val;
return ppow(base,m,ordre,res,contextptr);
}
if (base.empty()){
if (ck_is_positive(e,contextptr))
res.clear();
else
return false; // divisionby0err(base);
return true;
}
// series expansion to a constant power
monome first(base.front());
sparse_poly1 basecopy(base);
basecopy.erase(basecopy.begin());
pshift(basecopy,-first.exponent,basecopy,contextptr);
if (!pdiv(basecopy,first.coeff,basecopy,contextptr))
return false;
if (n==plus_inf && !basecopy.empty()){ // add an O() error term
monome last(undef,ordre+1);
basecopy.push_back(last);
}
// If first.exponent!=0 and direction==0 we can not find
// first.exponent^e consistently around 0
if (!direction && !is_integer(e) && !is_zero(first.exponent) ){
*logptr(contextptr) << gettext("Warning: vanishing non integral power expansion") << endl;
/*
res.clear();
first.coeff=pow(first.coeff,e,contextptr);
first.exponent = first.exponent*e;
res.push_back(first);
first.coeff=undef;
first.exponent += basecopy[0].exponent;
res.push_back(first);
return;
*/
}
// answer=first.coeff^e*x^(first.exponent*e)*(1+base)^e
// first (1+base)^e -> compose( [1,e,e(e-1)/2,...], base)
vecteur v(1,plus_one);
gen produit(e),factorielle(1);
for (int i=1;i<=ordre;++i){
v.push_back(rdiv(produit,factorielle,contextptr));
produit=produit*(e-gen(i));
factorielle=factorielle*gen(i+1);
}
if (e.type!=_INT_ || e.val>ordre)
v.push_back(undef);
// COUT << v << endl;
if (!pcompose(v,basecopy,res,contextptr))
return false;
// COUT << res << endl;
// final multiplication ans shift
pshift(res,first.exponent*e,res,contextptr);
return pmul(res,normalize_sqrt(pow(first.coeff,e,contextptr),contextptr),res,contextptr);
}
sparse_poly1 sppow(const sparse_poly1 & a,const gen &b,GIAC_CONTEXT){
sparse_poly1 res;
if (!ppow(a,b,series_default_order(contextptr),0,res,contextptr))
res=sparse_poly1(1,monome(1,undef));
return res;
}
bool pintegrate(sparse_poly1 & p,const gen & t,GIAC_CONTEXT){
sparse_poly1::iterator it=p.begin(),itend=p.end();
identificateur idu("u"); gen u(idu);
for (;it!=itend;++it){
#if 1
it->coeff=integrate_gen(it->coeff,t,contextptr);
#else
gen tmp=subst(it->coeff,t,u,false,contextptr);
it->coeff=_integrate(makesequence(tmp,u,0,t),contextptr);
#endif
}
return true;
}
// find q such that pcompose(p,q)=x
// does not take care of cst coeff of p
bool prevert(const sparse_poly1 & p_orig,sparse_poly1 & q,GIAC_CONTEXT){
sparse_poly1 p(p_orig);
if (p.empty())
return false; // setsizeerr(gettext("prevert"));
if (p.front().exponent==0)
p.erase(p.begin());
gen ak,k,invk,b1;
if (p.empty() || is_undef( (ak=p.front().coeff) ) || ck_is_positive(- (k=p.front().exponent) ,contextptr) || k.type!=_INT_ )
return false; // setsizeerr(gettext("prevert"));
invk=gen(1)/k;
b1=pow(ak,invk,contextptr);
vecteur pv(1);
sparse_poly1::const_iterator it=p.begin(),itend=p.end();
int N=0;
for (;it!=itend;++it){
gen Ng=it->exponent;
if (Ng.type!=_INT_)
return false; // setsizeerr();
N=Ng.val;
if (is_undef(it->coeff))
break;
for (int n=int(pv.size());n<N;++n){
pv.push_back(0);
}
pv.push_back(it->coeff);
}
if (it==itend)
N++;
N=k.val*N;
q.clear();
q.push_back(monome(gen(1)/b1,invk));
for (int n=2;n<N;++n){
sparse_poly1 qtemp(q),res;
qtemp.push_back(monome(undef,(n+1)*invk));
if (!pcompose(pv,qtemp,res,contextptr))
return false;
// find coeff of order (n+k-1)/k
sparse_poly1::const_iterator jt=res.begin(),jtend=res.end();
for (;jt!=jtend;++jt){
if (jt->exponent==(n+k-1)/k)
break;
}
if (jt!=jtend)
q.push_back(monome(-jt->coeff*invk/b1,gen(n)/k));
}
q.push_back(monome(undef,gen(N)/k));
return true;
}
static bool in_series__SPOL1(const gen & e,const identificateur & x,const vecteur & lvx, const vecteur & lvx_s,int ordre,int direction,sparse_poly1 & s,GIAC_CONTEXT){
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted) {
interrupted=ctrl_c=true;
return false;
}
s.clear();
int pos=equalposcomp(lvx,e);
if (pos){
gen f=lvx_s[pos-1]; // since vectors begin at position 0
if (is_zero(f)){
return true;
}
if (f.type==_SPOL1){
s=*(f._SPOL1ptr);
return true;
}
if (f.type!=_VECT)
return false; // settypeerr();
vecteur2sparse_poly1(*f._VECTptr,s);
return true;
}
if ( (e.type!=_SYMB) || !contains(e,x) ){
gen en=normal(e,contextptr);
if (!is_zero(en))
s.push_back(monome(en,0));
return true;
}
// do rational operations
if (e._SYMBptr->sommet==at_plus){
if (e._SYMBptr->feuille.type!=_VECT){
return in_series__SPOL1(e._SYMBptr->feuille,x,lvx,lvx_s,ordre,direction,s,contextptr);
}
const_iterateur it=e._SYMBptr->feuille._VECTptr->begin(),itend=e._SYMBptr->feuille._VECTptr->end();
sparse_poly1 temp;
for (;it!=itend;++it){
if (!in_series__SPOL1(*it,x,lvx,lvx_s,ordre,direction,temp,contextptr))
return false;
padd(s,temp,s,contextptr);
}
return true;
}
if (e._SYMBptr->sommet==at_neg){
if (e._SYMBptr->feuille.type!=_VECT){
if (!in_series__SPOL1(e._SYMBptr->feuille,x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
pneg(s,s,contextptr);
return true;
}
const_iterateur it=e._SYMBptr->feuille._VECTptr->begin(),itend=e._SYMBptr->feuille._VECTptr->end();
sparse_poly1 temp;
for (;it!=itend;++it){
if (!in_series__SPOL1(*it,x,lvx,lvx_s,ordre,direction,temp,contextptr))
return false;
pneg(temp,temp,contextptr);
padd(s,temp,s,contextptr);
}
return true;
}
if (e._SYMBptr->sommet==at_prod){
if (e._SYMBptr->feuille.type!=_VECT){
if (!in_series__SPOL1(e._SYMBptr->feuille,x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
return true;
}
const_iterateur it=e._SYMBptr->feuille._VECTptr->begin(),itend=e._SYMBptr->feuille._VECTptr->end();
sparse_poly1 temp;
s=sparse_poly1(1,monome(1,0));
for (;it!=itend;++it){
if (!in_series__SPOL1(*it,x,lvx,lvx_s,ordre,direction,temp,contextptr) ||
!pmul(s,temp,s,true,ordre,contextptr))
return false;
}
return true;
}
if (e._SYMBptr->sommet==at_inv){
if (e._SYMBptr->feuille.type==_VECT)
return false; // setsizeerr(gettext("series.cc/in_series__SPOL1"));
sparse_poly1 temp;
if (!in_series__SPOL1(e._SYMBptr->feuille,x,lvx,lvx_s,ordre,direction,temp,contextptr))
return false;
return pdiv(sparse_poly1(1,monome(1,0)),temp,s,ordre,contextptr);
}
if (e._SYMBptr->sommet==at_pow){
// the power is independent on x
gen base=(*(e._SYMBptr->feuille._VECTptr))[0];
gen exponent=(*(e._SYMBptr->feuille._VECTptr))[1];
if (!in_series__SPOL1(base,x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
return ppow(s,exponent,ordre,direction,s,contextptr);
}
// unknown rational operator
invalidserieserr(gettext("unknown rational operator"));
return false; //
}
static void find_image(const symbolic & temp__SYMB,gen & image_of_lim_point,sparse_poly1 & s,int direction,GIAC_CONTEXT){
if (!s.empty()){
if (s.begin()->exponent==0){
image_of_lim_point=s.begin()->coeff;
// ?? FIXME ???
if (temp__SYMB.sommet!=at_abs){
s.erase(s.begin()); // remove cst coeff from s
for (;!s.empty();){
s.front().coeff=normal(s.front().coeff,contextptr);
if (!is_zero(s.front().coeff))
break;
s.erase(s.begin());
}
}
}
else {
if (ck_is_strictly_positive(s.begin()->exponent,contextptr))
image_of_lim_point=0;
else {
image_of_lim_point=unsigned_inf;
if ( (s.begin()->exponent.type==_INT_) && !(s.begin()->exponent.val%2) ){ // odd negative exponent
if (is_strictly_positive(s.begin()->coeff,contextptr))
image_of_lim_point=plus_inf;
if (is_strictly_positive(-s.begin()->coeff,contextptr))
image_of_lim_point=minus_inf;
}
else { // other negative exponent
if (direction){
if (is_strictly_positive(s.begin()->coeff,contextptr))
image_of_lim_point=plus_inf;
if (is_strictly_positive(-s.begin()->coeff,contextptr))
image_of_lim_point=minus_inf;
if (direction<0){
if (s.begin()->exponent.type==_INT_)
image_of_lim_point=-image_of_lim_point;
else
image_of_lim_point=unsigned_inf;
}
}
}
} // end negative leading exponent
} // end non-zero leading exponent
} // end non-empty series
}
static int find_direction(const sparse_poly1 & s,int direction,GIAC_CONTEXT){
int image_of_direction=0;
if (!s.empty() && fastsign(s.front().coeff,0)){
if (direction)
image_of_direction=1;
else {
if (s.front().exponent.type==_INT_) {
if (s.front().exponent.val %2)
image_of_direction=direction;
else
image_of_direction=1;
}
}
image_of_direction=image_of_direction*fastsign(s.front().coeff,0);
return image_of_direction;
}
return 0;
}
static int ck_is_greater(const sparse_poly1 & s1, sparse_poly1 & s2,int direction,GIAC_CONTEXT){
sparse_poly1 s(s2);
pneg(s,s,contextptr);
padd(s1,s,s,contextptr);
int image_of_direction=find_direction(s,direction,contextptr);
if (!image_of_direction){
cksignerr(s);
return -1;
}
return image_of_direction==1;
}
static gen in_limit(const gen & e,const identificateur & x,const gen & lim_point,int direction,GIAC_CONTEXT);
static bool mrv_lead_term(const gen & e,const identificateur & x,gen & coeff, gen & mrv_var, gen & exponent,sparse_poly1 & q,int begin_ordre,GIAC_CONTEXT,bool series);
vecteur integrate(const vecteur & p,const gen & shift_coeff);
bool series(const sparse_poly1 & s_,const unary_function_ptr & u,int direction,sparse_poly1 & res,GIAC_CONTEXT){
sparse_poly1 s(s_);
if (s.empty())
return false;
gen shift_coeff=0;
gen o=porder(s);
if (o==plus_inf)
o=series_default_order(contextptr);
else
o=_floor(o,contextptr);
if (o.type!=_INT_)
return false;
gen exponent=s.front().exponent;
gen c=s.front().coeff;
if (is_undef(c) || is_strictly_positive(-exponent,contextptr))
return false;
if (exponent==0)
s.erase(s.begin());
else
c=0;
gen se=u.ptr()->series_expansion(c,o.val,u,direction,shift_coeff,contextptr);
if (se.type==_SPOL1){
return false;
}
if (se.type!=_VECT || shift_coeff!=0)
return false;
if (!pcompose(*se._VECTptr,s,res,contextptr))
return false;
return true;
}
sparse_poly1 series(const sparse_poly1 & s,const unary_function_ptr & u,int direction,GIAC_CONTEXT){
sparse_poly1 res;
if (!series(s,u,direction,res,contextptr))
return sparse_poly1(1,monome(undef,undef));
return res;
}
bool series__SPOL1(const gen & e_orig,const identificateur & x,const gen & lim_point,int ordre,int direction,sparse_poly1 & s,GIAC_CONTEXT){
gen e(e_orig);
// fast check first
if (!contains(e,x)){
s.push_back(monome(e,0));
return true;
}
if (e.type==_IDNT){
if (!is_zero(lim_point))
s.push_back(monome(lim_point));
if (ordre)
s.push_back(monome(1,1));
else
s.push_back(monome(undef,1));
return true;
}
if (e.type!=_SYMB)
return false; // settypeerr(); // comp not allowed
// rewrite cos/sin/tan constants using rootof
vecteur lv1(lvar(e)),lva,lvb;
gen tmp;
const_iterateur lv1_it=lv1.begin(),lv1_itend=lv1.end();
for (;lv1_it!=lv1_itend;++lv1_it){
if (lv1_it->type==_SYMB){
unary_function_ptr & u =lv1_it->_SYMBptr->sommet;
if ( (u==at_cos || u==at_sin || u==at_tan) && has_evalf(*lv1_it,tmp,1,contextptr)){
tmp=normal(trig2exp(*lv1_it,contextptr),contextptr);
if (lop(tmp,at_exp).empty()){
lva.push_back(*lv1_it);
lvb.push_back(tmp);
}
}
}
}
if (!lva.empty())
e=subst(e,lva,lvb,false,contextptr);
// find list of vars depending on x
vecteur lvx(rlvarx(e,x));
iterateur lvx_it=lvx.begin(),lvx_end=lvx.end();
// find asymptotic series expansion of vars in lvx
vecteur lvx_s;
lvx_s.reserve(lvx_end-lvx_it);
for (;lvx_it!=lvx_end;++lvx_it){
if (lvx_it->type==_IDNT){
sparse_poly1 tmp;
if (!is_zero(lim_point))
tmp.push_back(monome(lim_point));
if (ordre)
tmp.push_back(monome(1,1));
else
tmp.push_back(monome(undef,1));
lvx_s.push_back(tmp);
continue;
}
if (lvx_it->type!=_SYMB) // just in case...
return false; // settypeerr();
// test for a^b
symbolic temp__SYMB=*lvx_it->_SYMBptr;
if (temp__SYMB.sommet==at_order_size){
if (!is_zero(lim_point))
return false;
sparse_poly1 tmp;
tmp.push_back(monome(undef,0));
lvx_s.push_back(tmp);
continue;
}
if ( (temp__SYMB.sommet==at_pow) && (!contains((*temp__SYMB.feuille._VECTptr)[1],x) ) ){
if (!in_series__SPOL1((*temp__SYMB.feuille._VECTptr)[0],x,lvx,lvx_s,ordre,direction,s,contextptr)||
!ppow(s,(*temp__SYMB.feuille._VECTptr)[1],ordre,direction,s,contextptr))
return false;
lvx_s.push_back(s);
continue;
}
if (temp__SYMB.sommet==at_pow)
temp__SYMB=symbolic(at_exp,(*temp__SYMB.feuille._VECTptr)[1]*ln((*temp__SYMB.feuille._VECTptr)[0],contextptr));
// Check here for logarithms if image_of_lim_point=+/-inf
// In such case we must factor x^s.begin().exponent and add
// it to the exponent 0 term of the series expansion of the ln
if (temp__SYMB.sommet==at_ln){
// recursive call, works since lvx is sorted by increasing size
if (!in_series__SPOL1(temp__SYMB.feuille,x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
gen exponent=s.front().exponent;
gen c=s.front().coeff;
s.erase(s.begin());
bool adjust=false;
if (is_positive(-c,contextptr)){
// im(ln(c)) is i*pi, but im(ln(c*x^exposant+...)) might be -i*pi
// check sign of imaginary part of expansion
sparse_poly1::iterator it=s.begin(),itend=s.end();
for (;it!=itend;++it){
if (is_undef(it->coeff))
break;
gen tmp=im(it->coeff,contextptr);
if (!is_zero(tmp)){
if (is_positive(-tmp,contextptr))
adjust=true;
break;
}
}
}
if (!s.empty()){
pshift(s,-exponent,s,contextptr);
if (!pdiv(s,c,s,contextptr))
return false;
vecteur expansion(1,zero);
expansion.reserve(ordre);
for (int i=1;i<=ordre;i++){
if (i%2)
expansion.push_back(inv(gen(i),contextptr));
else
expansion.push_back(-inv(gen(i),contextptr));
}
expansion.push_back(undef);
if (!pcompose(expansion,s,s,contextptr))
return false;
}
if (!is_zero(exponent) || !is_one(c)){
c=ln(c,contextptr);
if (adjust)
c-=cst_two_pi*cst_i;
s.insert(s.begin(),monome(exponent*ln(x,contextptr)+c));
}
lvx_s.push_back(s);
continue;
COUT << s.back() << endl;
}
// test for the special case var=f(x)
if ((temp__SYMB.feuille.type==_IDNT) && (temp__SYMB.sommet!=at_abs)){
// Since e contains x feuille of e must be x
if (!temp__SYMB.sommet.ptr()->series_expansion){
*logptr(contextptr) << gettext("no taylor method for ") << temp__SYMB.sommet.ptr()->print(contextptr) << endl;
return false;
}
gen shift_coeff;
gen res=temp__SYMB.sommet.ptr()->series_expansion(lim_point,ordre,temp__SYMB.sommet,direction,shift_coeff,contextptr);
if (res.type==_SPOL1)
lvx_s.push_back(*res._SPOL1ptr);
else {// res must be a vecteur
if (res.type!=_VECT)
return false; // settypeerr(gettext("series.cc 1066"));
sparse_poly1 temp(vecteur2sparse_poly1(*res._VECTptr));
if (!is_zero(shift_coeff)){
pshift(temp,shift_coeff,temp,contextptr);
if (is_positive(shift_coeff,contextptr))
temp.insert(temp.begin(),monome(temp__SYMB.sommet(lim_point,contextptr)));
}
lvx_s.push_back(temp);
}
continue;
}
// Taylor not successfull: find series_expansion of arg,
// compose with sommet expansion
// fixme: multiargs disabled, should return a vecteur of series_exp
if (temp__SYMB.sommet != at_of && temp__SYMB.feuille.type==_VECT){
int nargs=int(temp__SYMB.feuille._VECTptr->size());
if (nargs==4 && temp__SYMB.sommet==at_sum){
vecteur & tempfv=*temp__SYMB.feuille._VECTptr;
gen k=tempfv[1],lo=tempfv[2],up=tempfv[3];
if (contains(k,x)){
invalidserieserr(gettext("Summation variable must be != from series expansion variable"));
return false;
}
if (k.type!=_IDNT || derive(lo,x,contextptr)!=0 || derive(up,x,contextptr)!=0)
return false; // setsizeerr();
sparse_poly1 p;
if (!in_series__SPOL1(tempfv[0],x,lvx,lvx_s,ordre,direction,p,contextptr))
return false;
// sum lvx_s
sparse_poly1::iterator it=p.begin(),itend=p.end();
for (;it!=itend;++it){
if (is_undef(it->coeff))
break;
it->coeff=_sum(makesequence(it->coeff,k,lo,up),contextptr);
}
lvx_s.push_back(p);
continue;
//invalidserieserr(gettext("taylor of sum not implemented"));
//return false;
}
if (temp__SYMB.sommet==at_euler_mac_laurin){
if (nargs!=5){
invalidserieserr(gettext("Integral must be definite"));
return false;
}
vecteur & tempfv=*temp__SYMB.feuille._VECTptr;
gen k=tempfv[2];
if (contains(k,x)){
invalidserieserr(gettext("Summation variable must be != from series expansion variable"));
return false;
}
if (k.type!=_IDNT)
return false; // setsizeerr();
// find upper and lower bound limit
gen lower=tempfv[3],upper=tempfv[4],f=tempfv[0],F=tempfv[1];
gen fdiff=derive(f,k,contextptr);
// first add integral part
gen eff = preval(F,k,lower,upper,contextptr);
eff += (limit(f,*k._IDNTptr,upper,-1,contextptr)+limit(f,*k._IDNTptr,lower,1,contextptr))/2;
// then Bernoulli part
if (is_undef(fdiff))
return false;
for (int i=1;i<ordre;i++){
gen add= limit(fdiff,*k._IDNTptr,upper,-1,contextptr)-limit(fdiff,*k._IDNTptr,lower,1,contextptr);
add=add*bernoulli(2*i)/factorial(2*i);
eff += add; // fdiff flimdiff 2 fois
fdiff=derive(fdiff,k,contextptr);
fdiff=ratnormal(derive(fdiff,k,contextptr),contextptr);
if (is_undef(fdiff))
return false;
}
// must do a recursive call since eff may contain new functions
gen coeff,mrv_var,exponent;
eff =subst(eff,x,inv(x,contextptr),true,contextptr);
if (!mrv_lead_term(eff,x,coeff,mrv_var,exponent,s,ordre,contextptr,true))
return false;
lvx_s.push_back(s);
continue;
// never reached setsizeerr();
}
if (temp__SYMB.sommet==at_igamma_exp){
if (nargs!=2){
invalidserieserr(gettext("igamma: bad arg number"));
return false;
}
vecteur & tempfv=*temp__SYMB.feuille._VECTptr;
gen a=tempfv[0];
sparse_poly1 p;
if (!in_series__SPOL1(tempfv[1],x,lvx,lvx_s,ordre,direction,p,contextptr))
return false;
gen image_of_lim_point;
find_image(temp__SYMB,image_of_lim_point,p,direction,contextptr);
if (!is_inf(image_of_lim_point))
return false;
// invert series expansion
sparse_poly1 stmp;
if (!pdiv(sparse_poly1(1,monome(1,0)),p,stmp,ordre,contextptr))
return false;
p=stmp;
// igamma(a,x)=Gamma(a)-int_x^inf exp(-t)*t^(a-1) dt
// =Gamma(a)-exp(-x)*x^(a-1)-(a-1)*int_x^inf exp(-t)*t^(a-2) dt
// ...
// igamma_replace(a,x)=Gamma(a)-exp(-x)*igamma_exp(a,x)
// therefore expansion of igamma_exp(a,x)=x^(a-1)[1+(a-1)/x+(a-1)*(a-2)/x^2...]
vecteur v(ordre+1); gen facti(1);
for (int i=0;i<=ordre;++i){
v[i]=facti;
facti=(a-i-1)*facti;
}
v.push_back(undef);
if (!pcompose(v,p,s,contextptr))
return false;
pshift(s,1-a,s,contextptr);
lvx_s.push_back(s);
continue;
}
if (temp__SYMB.sommet==at_lower_incomplete_gamma){
if (nargs!=2){
invalidserieserr(gettext("igamma: bad arg number"));
return false;
}
// series expansion of derivative
vecteur & tempfv=*temp__SYMB.feuille._VECTptr;
gen a=tempfv[0];
sparse_poly1 p;
if (!in_series__SPOL1(tempfv[1],x,lvx,lvx_s,ordre,direction,p,contextptr))
return false;
gen image_of_lim_point;
find_image(temp__SYMB,image_of_lim_point,p,direction,contextptr);
if (is_inf(image_of_lim_point))
return false; // inf is prevented by limit_symbolic_preprocessing
if (is_zero(image_of_lim_point)){
int image_of_direction=0;
image_of_direction = find_direction(p,direction,contextptr);
if (image_of_direction==0)
return false;
vecteur v(ordre+1); gen facti(1);
for (int i=0;i<=ordre;++i){
v[i]=inv(facti*(a+i),contextptr);
facti=-(i+1)*facti;
}
if (!pcompose(v,p,s,contextptr))
return false;
if (image_of_direction==-1)
pneg(p,p,contextptr);
if (!ppow(p,a,ordre,image_of_direction,p,contextptr))
return false;
if (image_of_direction==-1)
pneg(p,p,contextptr);
if (!pmul(p,s,s,true,ordre,contextptr))
return false;
}
else {
vecteur v;
gen der;
if (is_positive(image_of_lim_point,contextptr))
der=pow(x,a-1,contextptr)*exp(-x,contextptr);
else
der=-pow(-x,a-1,contextptr)*exp(-x,contextptr);
if (!taylor(der,x,image_of_lim_point,ordre,v,contextptr))
return false;
v=integrate(v,1);
gen intcst=_lower_incomplete_gamma(makesequence(a,lim_point),contextptr);
v.insert(v.begin(),intcst);
if (!pcompose(v,p,s,contextptr))
return false;
}
lvx_s.push_back(s);
continue;
}
if (temp__SYMB.sommet==at_integrate){
if (nargs!=4){
invalidserieserr(gettext("Integral must be definite"));
return false;
}
vecteur & tempfv=*temp__SYMB.feuille._VECTptr;
gen t=tempfv[1];
if (contains(t,x)){
invalidserieserr(gettext("Integration variable must be != from series expansion variable"));
return false;
}
if (!contains(tempfv[0],x)){
vecteur v;
if (!taylor(temp__SYMB,x,lim_point,ordre,v,contextptr))
return false;
s.clear();
for (int i=0;i<v.size();++i){
s.push_back(monome(v[i],i));
}
lvx_s.push_back(s);
continue;
}
if (!in_series__SPOL1(tempfv[0],x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
// FIXME if tempfv[3] and tempfv[2] tends to the same limit l
// we may expand tempfv[0] w.r.t. t at l before integration
// integrate s term by term wrt t
if (!pintegrate(s,t,contextptr))
return false;
gen remains,primit=sparse_poly12gen(s,x,remains,false);
// then compose primit at bounds and substract
primit=subst(primit,t,tempfv[3],false,contextptr)-subst(primit,t,tempfv[2],false,contextptr);
if (!series__SPOL1(primit,x,lim_point,ordre,direction,s,contextptr))
return false;
// add remains to s:
// int(remains,t,tempfv[2],tempfv[3]) =
// (tempfv[3]-tempfv[2])*remains(theta) with theta in interval
remains=remains*(tempfv[3]-tempfv[2]);
sparse_poly1 p;
if (!series__SPOL1(remains,x,lim_point,ordre,direction,p,contextptr))
return false;
if (p.empty()){
invalidserieserr(gettext("Can not expand remainder of integrand"));
return false;
}
p=sparse_poly1(p.begin(),p.begin()+1);
p.front().coeff=undef;
s=spadd(p,s,contextptr);
lvx_s.push_back(s);
continue;
}
const_iterateur fit=temp__SYMB.feuille._VECTptr->begin(),fitend=temp__SYMB.feuille._VECTptr->end();
if (temp__SYMB.sommet==at_Psi || temp__SYMB.sommet==at_Eta || temp__SYMB.sommet==at_Zeta){
if (!in_series__SPOL1(*fit,x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
}
else {
bool ok=false;
dbgprint_vector <sparse_poly1> vs;
vs.reserve(fitend-fit);
for (;fit!=fitend;++fit){
if (!in_series__SPOL1(*fit,x,lvx,lvx_s,ordre,direction,s,contextptr))
return false;
vs.push_back(s);
}
if (temp__SYMB.sommet==at_max){
ok=true;
int testck=ck_is_greater(vs.front(),vs.back(),direction,contextptr);
if (testck==-1)
return false;
if (testck)
s=vs.front();
else
s=vs.back();
}
if (temp__SYMB.sommet==at_min){
ok=true;
int testck=ck_is_greater(vs.front(),vs.back(),direction,contextptr);
if (testck==-1)
return false;
if (testck)
s=vs.back();
else
s=vs.front();
}
if (!ok){
invalidserieserr(gettext(" multiargs not implemented"));
return false;
}
lvx_s.push_back(s);
continue;
}
}
else { // 1-arg function
if (temp__SYMB.sommet==at_of){
gen & tf=temp__SYMB.feuille;
if (tf.type==_VECT && tf._VECTptr->size()==2){
gen tff=tf._VECTptr->front();
gen tfx=tf._VECTptr->back();
if (!in_series__SPOL1(tfx,x,lvx,lvx_s,ordre,direction,s,contextptr)) return false; // s<-arg
}
}
else {
if (!in_series__SPOL1(temp__SYMB.feuille,x,lvx,lvx_s,ordre,direction,s,contextptr)) return false; // s<-arg
}
} // end 1-arg function
gen image_of_lim_point;
find_image(temp__SYMB,image_of_lim_point,s,direction,contextptr);
int image_of_direction=0;
image_of_direction = find_direction(s,direction,contextptr);
// Symbolic series expansion f(x), f is assumed to be analytic
if (temp__SYMB.sommet==at_of){
gen & tf=temp__SYMB.feuille;
if (tf.type==_VECT && tf._VECTptr->size()==2){
gen tff=tf._VECTptr->front();
gen tfx=tf._VECTptr->back();
// Symbolic Taylor expansion of tff
vecteur expansion(1,symbolic(at_of,makesequence(tff,image_of_lim_point)));
expansion.reserve(ordre);
for (int i=1;i<=ordre;i++){
gen fn;
if (i==1)
fn=symbolic(at_of,makesequence(symbolic(at_function_diff,tff),image_of_lim_point));
else
fn=symbolic(at_of,makesequence(symbolic(at_of,makesequence(symbolic(at_composepow,makesequence(at_function_diff,i)),tff)),image_of_lim_point));
expansion.push_back(fn/factorial(i));
}
expansion.push_back(undef);
if (!pcompose(expansion,s,s,contextptr))
return false;
lvx_s.push_back(s);
continue;
}
}
if (temp__SYMB.sommet==at_abs){
if (!image_of_direction){
*logptr(contextptr) << gettext("Sign error ") << s << endl;
return false; // cksignerr(s);
}
if (image_of_direction==-1)
pneg(s,s,contextptr);
lvx_s.push_back(s);
continue;
}
if (is_inf(image_of_lim_point)){
// check for sin/cos
if (temp__SYMB.sommet==at_cos || temp__SYMB.sommet==at_sin){
// split the series expansion in two parts, one tending -> 0
sparse_poly1::iterator it=s.begin(),itend=s.end();
for (;it!=itend;++it){
if (ck_is_strictly_greater(it->exponent,zero,contextptr))
break;
}
sparse_poly1 s0(it,s.end()),s1(s.begin(),it);
// expansion is done at s0
image_of_lim_point=s1;
s=s0;
}
else {
// the function is assumed to have an expansion at infinity
// invert series expansion
sparse_poly1 stmp;
if (!pdiv(sparse_poly1(1,monome(1,0)),s,stmp,ordre,contextptr))
return false;
s=stmp;
}
}
gen shift_coeff;
if (!temp__SYMB.sommet.ptr()->series_expansion){
*logptr(contextptr) << string(gettext("Not expandable "))+temp__SYMB.sommet.ptr()->s << endl;
return false;
}
int addorder=0;
gen expansion;
if ( (temp__SYMB.sommet==at_Psi ||temp__SYMB.sommet==at_Eta ||temp__SYMB.sommet==at_Zeta) && temp__SYMB.feuille.type==_VECT){
if (temp__SYMB.feuille._VECTptr->size()!=2 )
return false; // setsizeerr();
addorder=temp__SYMB.feuille._VECTptr->back().val;
if (addorder<=0){
*logptr(contextptr) << gettext("Psi/Zeta/Eta: bad second argument") << endl;
return false;
}
if (temp__SYMB.sommet==at_Psi)
expansion=at_Psi_minus_ln->ptr()->series_expansion(image_of_lim_point,ordre+addorder,temp__SYMB.sommet,image_of_direction,shift_coeff,contextptr);
}
if (expansion==0)
expansion=temp__SYMB.sommet.ptr()->series_expansion(image_of_lim_point,ordre+addorder,temp__SYMB.sommet,image_of_direction,shift_coeff,contextptr);
if (expansion.type==_VECT){
if (addorder){
// derive expansion
vecteur & v =*expansion._VECTptr;
for (int i=0;i<addorder;++i){
int vs=int(v.size());
if (is_zero(shift_coeff)){
vecteur w(vs-1);
for (int j=1;j<vs;++j){
w[j-1]=j*v[j];
}
v=w;
}
else {
for (int j=0;j<vs;++j){
v[j]=-v[j]*(j+shift_coeff);
}
shift_coeff += 1;
}
}
// final correction for Psi
if (temp__SYMB.sommet==at_Psi){
v.insert(v.begin(),gen((addorder%2)?1:-1)/factorial(addorder));
shift_coeff -= 1;
}
}
if (is_zero(shift_coeff)){
if (!pcompose(*expansion._VECTptr,s,s,contextptr))
return false;
}
else {
sparse_poly1 temp;
if (!ppow(s,shift_coeff,ordre,direction,temp,contextptr))
return false;
if (!pcompose(*expansion._VECTptr,s,s,contextptr) ||
!pmul(s,temp,s,true,ordre,contextptr))
return false;
if (is_positive(shift_coeff,contextptr)){
gen imtemp;
if (addorder>0)
imtemp=temp__SYMB.sommet(makesequence(image_of_lim_point,addorder),contextptr);
else
imtemp=temp__SYMB.sommet(image_of_lim_point,contextptr);
if (!is_zero(imtemp))
s.insert(s.begin(),monome(imtemp));
}
}
}
else {
s.clear();
s.push_back(monome(undef,minus_inf));
return true;
}
lvx_s.push_back(s);
// fixme: add support for sparse_poly1 composition
} // end loop lvx_it!=lvx_end
return in_series__SPOL1(e,x,lvx,lvx_s,ordre,direction,s,contextptr);
}
sparse_poly1 series__SPOL1(const gen & e,const identificateur & x,const gen & lim_point,int ordre,int direction,GIAC_CONTEXT){
sparse_poly1 s;
if (!series__SPOL1(e,x,lim_point,ordre,direction,s,contextptr))
s=sparse_poly1(1,monome(1,undef));
return s;
}
static sparse_poly1 ck_series__SPOL1(const gen & e,const identificateur & x,const gen & lim_point,int ordre,int direction,GIAC_CONTEXT){
sparse_poly1 s;
if (!series__SPOL1(e,x,lim_point,ordre,direction,s,contextptr)){
s=sparse_poly1(1,monome(1,undef));
return s;
}
// if s is not at order ordre, ask again with a modified ordre
gen true_order=porder(s);
if (true_order.type==_INT_ && true_order.val<=ordre){
if (series__SPOL1(e,x,lim_point,ordre+1+ordre-true_order.val,direction,s,contextptr)){
if (!s.empty())
ptruncate(s,ordre-s.front().exponent,contextptr);
}
else
s=sparse_poly1(1,monome(1,undef));
}
// truncate s
for (unsigned i=0;i<s.size();++i){
if (is_strictly_greater(s[i].exponent,ordre,contextptr)){
s[i].coeff=undef;
if (i<s.size()-1)
s.erase(s.begin()+i+1,s.end());
}
}
return s;
}
#ifdef DEBUG_SUPPORT
static void inutile(sparse_poly1 & s){
s.dbgprint();
}
#endif
// ***********************
// LIMITS
// ***********************
bool contains(const vecteur & v,const gen & elem){
vecteur::const_iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it)
if (contains(*it,elem))
return true;
return false;
}
bool contains(const gen & e,const gen & elem){
if (e==elem)
return true;
if (e.type==_VECT){
return contains(*e._VECTptr,elem);
}
if (e.type==_SYMB){
return contains(e._SYMBptr->feuille,elem);
}
if (e.type==_FRAC)
return contains(e._FRACptr->num,elem) || contains(e._FRACptr->den,elem);
#if defined HAVE_LIBMPFI && !defined NO_RTTI
if (e.type==_REAL){
if (real_interval * ptr=dynamic_cast<real_interval *>(e._REALptr)){
mpfr_t tmp; mpfr_init2(tmp,mpfi_get_prec(ptr->infsup));
mpfi_get_left(tmp,ptr->infsup);
gen einf=real_object(tmp);
mpfi_get_right(tmp,ptr->infsup);
gen esup=real_object(tmp);
gen eleminf,elemsup;
if (elem.type!=_REAL)
ptr=0;
else
ptr=dynamic_cast<real_interval *>(elem._REALptr);
if (ptr){
mpfi_get_left(tmp,ptr->infsup);
eleminf=real_object(tmp);
mpfi_get_right(tmp,ptr->infsup);
elemsup=real_object(tmp);
}
else {
eleminf=elem; elemsup=elem;
}
mpfr_clear(tmp);
return is_greater(esup,elemsup,context0) && is_greater(eleminf,einf,context0);
}
}
#endif
return false;
}
vecteur lvarx(const gen &e,const gen & x,bool test){
vecteur v(lvar(e));
vecteur res;
vecteur::const_iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it){
// remove at_of if the function of of is x
vecteur l=lop(*it,at_of);
int i;
for (i=0;i<l.size();++i){
if (contains(l[i]._SYMBptr->feuille[0],x))
break;
}
if (i<l.size())
continue;
// remove ^ if exponent does not depend on x
if ( (it->type==_SYMB)
&& ( (it->_SYMBptr->sommet==at_pow && !contains((*(it->_SYMBptr->feuille._VECTptr))[1],x)) ||
(it->_SYMBptr->sommet==at_NTHROOT && !contains((*(it->_SYMBptr->feuille._VECTptr))[0],x)) )
){
vecteur tmp(lvarx((*(it->_SYMBptr->feuille._VECTptr))[(it->_SYMBptr->sommet==at_pow)?0:1],x));
const_iterateur it=tmp.begin(),itend=tmp.end();
for (;it!=itend;++it){
if (!equalposcomp(res,*it))
res.push_back(*it);
}
}
else {
if ( (!test || res.empty() || *it!=x ) && contains(*it,x) && !equalposcomp(res,*it))
res.push_back(*it);
}
}
return res;
}
void rlvarx(const gen &e,const gen & xgen,vecteur & res){
const vecteur & v=lvar(e);
vecteur::const_iterator it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (!contains(*it,xgen) || equalposcomp(res,*it))
continue;
// recursive call
res.push_back(*it);
if (it->is_symb_of_sommet(at_derive) && it->_SYMBptr->feuille.type==_VECT && it->_SYMBptr->feuille._VECTptr->size()==3 && it->_SYMBptr->feuille._VECTptr->back().type==_INT_){
int n=it->_SYMBptr->feuille._VECTptr->back().val;
for (--n;n>1;--n){
res.push_back(symbolic(at_derive,makesequence(it->_SYMBptr->feuille._VECTptr->front(),(*it->_SYMBptr->feuille._VECTptr)[1],n)));
}
res.push_back(symbolic(at_derive,makesequence(it->_SYMBptr->feuille._VECTptr->front(),(*it->_SYMBptr->feuille._VECTptr)[1])));
}
if (it->type==_SYMB) {
rlvarx(it->_SYMBptr->feuille,xgen,res);
if ( (it->_SYMBptr->sommet==at_pow)
&& contains((*(it->_SYMBptr->feuille._VECTptr))[1],xgen) )
rlvarx(symbolic(at_ln,(*(it->_SYMBptr->feuille._VECTptr))[0]),xgen,res);
}
}
}
vecteur rlvarx(const gen &e,const gen & x){
vecteur res;
rlvarx(e,x,res);
gen_sort_f(res.begin(),res.end(),symb_size_less);
return res;
}
static void upscale(gen & e,const identificateur & x,GIAC_CONTEXT){
vecteur a_remplacer,remplacer_par;
a_remplacer.push_back(ln(x,contextptr));
remplacer_par.push_back(x);
a_remplacer.push_back(x);
remplacer_par.push_back(exp(x,contextptr));
e=subst(e,a_remplacer,remplacer_par,false,contextptr);
}
static void downscale(gen & e,const identificateur & x,GIAC_CONTEXT){
vecteur a_remplacer,remplacer_par;
a_remplacer.push_back(exp(x,contextptr));
remplacer_par.push_back(x);
a_remplacer.push_back(x);
remplacer_par.push_back(ln(x,contextptr));
e=subst(e,a_remplacer,remplacer_par,false,contextptr);
}
/*
gen pow2exp(const gen & e,const identificateur & x){
if (e.type==_VECT){
const_iterateur it=e._VECTptr->begin(),itend=e._VECTptr->end();
vecteur v;
v.reserve(itend-it);
for (;it!=itend;++it)
v.push_back(pow2exp(*it,x));
return v;
}
if (e.type!=_SYMB)
return e;
if ( e._SYMBptr->sommet==at_pow && contains((*(e._SYMBptr->feuille._VECTptr))[1],x))
return exp(pow2exp((*(e._SYMBptr->feuille._VECTptr))[1],x)*pow2exp(ln((*(e._SYMBptr->feuille._VECTptr))[0]),x));
if ( e._SYMBptr->sommet==at_tan && contains (e._SYMBptr->feuille,x))
return symbolic(at_sin,pow2exp(e._SYMBptr->feuille,x))/symbolic(at_cos,pow2exp(e._SYMBptr->feuille,x));
return e._SYMBptr->sommet(pow2exp(e._SYMBptr->feuille,x),contextptr);
}
*/
static int check_bounded(const gen & g,GIAC_CONTEXT){
vecteur v=loptab(g,sincostan_tab);
int vs=int(v.size());
vecteur w;
for (int i=0;i<vs;++i){
if (v[i].type==_SYMB && v[i]._SYMBptr->feuille.type==_SPOL1)
w.push_back(v[i]);
}
if (w.empty())
return 0;
for (unsigned i=0;i<w.size();++i){
vecteur lv=lvarxwithinv(g,w[i],contextptr);
if (lv.empty())
continue;
if (lv.size()>=2 || lv[0]!=w[i]){
//gensizeerr("Limit probably undefined, algorithm unable to handle "+g.print(contextptr));
return -1;
}
}
return 1;
}
// specialization
static int equalposcomp(const std::vector<const unary_function_ptr *> & v,unary_function_ptr * w){
int n=1;
for (std::vector<const unary_function_ptr *>::const_iterator it=v.begin();it!=v.end();++it){
if (*(*it)==*w)
return n;
else
n++;
}
return 0;
}
static gen ln_expand0_(const gen & e,GIAC_CONTEXT){
if (e.type!=_SYMB)
return ln(e,contextptr);
if (e._SYMBptr->sommet==at_exp)
return e._SYMBptr->feuille;
if (e._SYMBptr->sommet==at_prod)
return symbolic(at_plus,apply(e._SYMBptr->feuille,ln_expand0_,contextptr));
if (e._SYMBptr->sommet==at_inv)
return -ln_expand0_(e._SYMBptr->feuille,contextptr);
if (e._SYMBptr->sommet==at_pow){
gen & tmp=e._SYMBptr->feuille;
if (tmp.type==_VECT && tmp._VECTptr->size()==2)
return tmp._VECTptr->back()*ln_expand0_(tmp._VECTptr->front(),contextptr);
}
return ln(e,contextptr);
}
static gen ln_expand_(const gen & e0,GIAC_CONTEXT){
gen e(factor(e0,false,contextptr));
return ln_expand0_(e,contextptr);
}
static gen exp_series_(const gen & e0,GIAC_CONTEXT){
vecteur v=lop(e0,at_ln);
if (v.size()==1 && is_integer(v.front()._SYMBptr->feuille)){
gen a,b;
if (is_linear_wrt(e0,v.front(),a,b,contextptr))
return exp(b,contextptr)*pow(v.front()._SYMBptr->feuille,a,contextptr);
}
return exp(e0,contextptr);
}
static gen remove_lnexp(const gen & e,GIAC_CONTEXT){
vector<const unary_function_ptr *> v(1,at_ln);
v.push_back(at_exp);
vector< gen_op_context > w(1,&ln_expand_);
w.push_back(&exp_series_);
return subst(e,v,w,false,contextptr);
}
gen limit_symbolic_preprocess(const gen & e0,const identificateur & x,const gen & lim_point,int direction,GIAC_CONTEXT){
// FIXME: add support for int and sum
gen e=factorial2gamma(e0,contextptr);
gen first_try=subst(e,x,lim_point,false,contextptr);
first_try=simplifier(first_try,contextptr);
if (!contains(lidnt(first_try),unsigned_inf)){
gen chknum;
bool hasnum=has_evalf(first_try,chknum,1,contextptr);
first_try=recursive_ratnormal(first_try,contextptr);
gen chk=recursive_normal(first_try,contextptr);
if (hasnum && !is_undef(chk) && abs(chk-chknum,contextptr)>1e-10 && abs(1-chk/chknum,contextptr)>1e-10)
e=_simplify(e,contextptr);
}
// Find functions depending of x in e which are in the list
// If their argument tends to +/-infinity, replace these functions
vecteur v=rlvarx(e,x);
int vs=int(v.size()),pos1,pos2=0;
vecteur v1,v2;
for (int i=0;i<vs;++i){
if (v[i].type==_SYMB){
if (v[i].is_symb_of_sommet(at_ln)){
gen g=limit(v[i]._SYMBptr->feuille,x,lim_point,direction,contextptr);
if (is_inf(g) && g!=plus_inf)
return gensizeerr(gettext("ln of unsigned or minus infinity"));
}
if (v[i].is_symb_of_sommet(at_sinh) || v[i].is_symb_of_sommet(at_cosh) || v[i].is_symb_of_sommet(at_tanh)){
gen g=limit(v[i]._SYMBptr->feuille,x,lim_point,direction,contextptr);
if (is_inf(g)){
v1.push_back(v[i]);
v2.push_back(hyp2exp(v[i],contextptr));
continue;
}
}
if (v[i].is_symb_of_sommet(at_sum)){
gen tmp;
if (v[i]._SYMBptr->feuille.type==_VECT && v[i]._SYMBptr->feuille._VECTptr->size()==4){
vecteur & vv=*v[i]._SYMBptr->feuille._VECTptr;
if (derive(vv[2],x,contextptr)==0 && derive(vv[2],x,contextptr)==0)
continue;
}
if (!convert_to_euler_mac_laurin(v[i],x,tmp,contextptr))
return gensizeerr(gettext("Unable to convert sum to Euler Mac-Laurin ")+v[i].print(contextptr));
v1.push_back(v[i]);
v2.push_back(tmp);
}
if ( ( (pos1=equalposcomp(limit_tab,v[i]._SYMBptr->sommet)) || (pos2=equalposcomp(limit_tractable_functions(),&v[i]._SYMBptr->sommet)) ) ){
gen g=limit(v[i]._SYMBptr->feuille,x,lim_point,direction,contextptr);
if ( is_inf(g) || (g.type==_VECT && !g._VECTptr->empty() && is_inf(g._VECTptr->back())) ){
v1.push_back(v[i]);
v2.push_back(pos1?limit_replace[pos1-1](v[i]._SYMBptr->feuille,contextptr):limit_tractable_replace()[pos2-1](v[i]._SYMBptr->feuille,contextptr));
}
if (is_zero(g)){
if (v[i]._SYMBptr->sommet==at_Ci){
v1.push_back(v[i]);
v2.push_back(Ci_replace0(v[i]._SYMBptr->feuille,contextptr));
}
if (v[i]._SYMBptr->sommet==at_Ei){
v1.push_back(v[i]);
v2.push_back(Ei_replace0(v[i]._SYMBptr->feuille,contextptr));
}
}
}
}
}
if (!v1.empty())
e=remove_lnexp(subst(e,v1,v2,false,contextptr),contextptr);
v=rlvarx(e,x);
vs=int(v.size());
v1.clear(); v2.clear();
for (int i=0;i<vs;++i){
#if 1
if (v[i].is_symb_of_sommet(at_sign)){
gen g=v[i]._SYMBptr->feuille,tmp;
unsigned j=0;
for (;j<5;++j){
tmp=simplify(limit(g,x,lim_point,direction,contextptr),contextptr);
if (!is_zero(tmp)){
break;
}
g=derive(g,x,contextptr);
}
if (direction==0 && j!=0) {
continue;
}
if (j!=5){
// sign( x^j*tmp)
tmp=sign(tmp,contextptr);
if (direction==-1 && j%2)
tmp=-tmp;
v1.push_back(v[i]);
v2.push_back(tmp);
}
}
#else
if (v[i].is_symb_of_sommet(at_sign) && v[i]!=e){
gen g;
#ifndef NO_STDEXCEPT
try {
#endif
g=limit(v[i],x,lim_point,direction,contextptr);
v1.push_back(v[i]);
v2.push_back(g);
#ifndef NO_STDEXCEPT
} catch (std::runtime_error & ) {
}
#endif
}
#endif
}
e=subst(e,v1,v2,false,contextptr);
return e;
}
bool is_analytic(const gen & g){
if (g.type==_VECT){
const_iterateur it=g._VECTptr->begin(),itend=g._VECTptr->end();
for (;it!=itend;++it){
if (!is_analytic(*it))
return false;
}
}
if (g.type!=_SYMB)
return true;
if (equalposcomp(analytic_sommets,g._SYMBptr->sommet))
return is_analytic(g._SYMBptr->feuille);
return false;
}
static gen unidirectional_limit(const gen & e0,const identificateur & x,const gen & lim_point,int direction,GIAC_CONTEXT){
gen e_copy=e0;
// Unidirectional limit, rewrite first (if needed)
if (is_inf(lim_point)){
if (lim_point==minus_inf)
e_copy=subst(e_copy,x,-x,false,contextptr);
}
else {
if (direction>0)
e_copy=subst(e_copy,x,lim_point+inv(x,contextptr),false,contextptr);
else
e_copy=subst(e_copy,x,lim_point-inv(x,contextptr),false,contextptr);
}
gen coeff,mrv_var,exponent;
sparse_poly1 p;
if (!mrv_lead_term(e_copy,x,coeff,mrv_var,exponent,p,mrv_begin_order,contextptr,false) || is_undef(coeff)){
gensizeerr("Limit: Max order reached or unable to make series expansion");
return undef;
}
// check added for limit((tan(x)-x)/x^3,x=inf)
for (unsigned i=0;i<p.size();++i){
if (check_bounded(p[i].coeff,contextptr)==-1)
return gensizeerr("Limit probably undefined, algorithm unable to handle "+p[i].coeff.print(contextptr));
}
if (ck_is_strictly_positive(exponent,contextptr))
return 0;
if (is_zero(exponent)){
int l=check_bounded(coeff,contextptr);
if (l==-1)
return gensizeerr("Limit probably undefined, algorithm unable to handle "+coeff.print(contextptr));
return l==1?bounded_function(contextptr):coeff;
}
// check sign of coeff, if coeff depends on x first find equivalent
gen essai=subst(coeff,x,plus_inf,false,contextptr);
if (is_undef(essai) || is_zero(essai) || (essai==unsigned_inf)){
while (contains(coeff,x)){
e_copy=coeff;
if (!mrv_lead_term(e_copy,x,coeff,mrv_var,exponent,p,mrv_begin_order,contextptr,false))
return gensizeerr(contextptr);
}
essai=coeff;
}
gen s=0;
if (calc_mode(contextptr)!=1 || !has_i(p)) // should do it only up to order 0 terms
s=sign(essai,contextptr);
if (s==plus_one)
return plus_inf;
if (s==minus_one)
return minus_inf;
// ? FIXME: if essai=cos(<pi,-1>)+i*sin(<pi,-1>) unsigned_inf better
// limit((-2)^n,n,inf)
int l=check_bounded(essai,contextptr);
if (l==-1)
return gensizeerr("Limit probably undefined, algorithm unable to handle "+essai.print(contextptr));
return l==1?undef:unsigned_inf;
/*
essai=eval(subst(essai,sincosinf,vecteur(sincosinf.size(),undef)));
if (is_undef(essai))
return undef;
else
return unsigned_inf;
*/
}
static gen in_limit(const gen & e0,const identificateur & x,const gen & lim_point,int direction,GIAC_CONTEXT){
if (direction==-2)
return gensizeerr(contextptr);
vecteur vint=lop(rlvarx(e0,x),at_integrate);
for (unsigned i=0;i<vint.size();++i){
gen f=vint[i]._SYMBptr->feuille;
if (f.type!=_VECT || f._VECTptr->size()!=4)
return gensizeerr(gettext("Undefined integral"));
if ((*f._VECTptr)[1]==x)
return gensizeerr(gettext("Integration variable and limit variable are the same"));
if (!is_zero(derive(f._VECTptr->front(),x,contextptr)))
return gensizeerr(gettext("Integral in limit not implemented yet"));
}
if (e0.type==_VECT){
const_iterateur it=e0._VECTptr->begin(),itend=e0._VECTptr->end();
vecteur res;
res.reserve(itend-it);
for (;it!=itend;++it){
res.push_back(in_limit(*it,x,lim_point,direction,contextptr));
}
return gen(res,e0.subtype);
}
if (_about(x,contextptr)!=x){
identificateur xprime(" "+print_INT_(giac_rand(contextptr)));
return in_limit(quotesubst(e0,x,xprime,contextptr),xprime,lim_point,direction,contextptr);
}
gen e=Heavisidetosign(when2sign(piecewise2when(e0,contextptr),contextptr),contextptr);
// Adjust direction for +/- inf limits
if (lim_point==plus_inf)
direction=1;
if (lim_point==minus_inf)
direction=-1;
// First try substitution
if (has_i(lop(e,at_ln)))
e=recursive_normal(expln2trig(e,contextptr),contextptr);
if (loptab(e,sign_floor_ceil_round_tab).empty()){
gen first_try=subst(e,x,lim_point,false,contextptr);
first_try=eval(first_try,1,contextptr);
first_try=simplifier(first_try,contextptr);
// if (first_try==plus_inf || first_try==minus_inf) return first_try;
if (!contains(lidnt(first_try),unsigned_inf)){
if (has_num_coeff(first_try))
return first_try;
gen chknum;
bool hasnum=has_evalf(first_try,chknum,1,contextptr);
first_try=recursive_ratnormal(first_try,contextptr);
gen chk=recursive_normal(first_try,contextptr);
if (hasnum && !is_undef(chk) && abs(chk-chknum,contextptr)>1e-10 && abs(1-chk/chknum,contextptr)>1e-10){
chk=undef;
e=_simplify(e,contextptr);
}
if (!is_undef(chk)){
/*
if (!lop(chk,at_rootof).empty())
chk=ratnormal(first_try);
*/
if (!is_undef(chk) && !contains(lidnt(chk),unsigned_inf)){
chk=first_try;
return taille(chk,100)<taille(first_try,100)?chk:first_try;
}
}
}
if (lim_point==unsigned_inf){
*logptr(contextptr) << gettext("Warning, infinity is unsigned, perhaps you meant +infinity")<< endl;
first_try = subst(partfrac(e,false,contextptr),x,lim_point,false,contextptr);
// first_try = subst(ratnormal(e,contextptr),x,lim_point,false,contextptr);
}
else {
//bool b=assume_t_in_ab(x,direction==1?lim_point:lim_point-1,direction==-1?lim_point:lim_point+1,true,true,contextptr);
first_try = quotesubst(partfrac(e,false,contextptr),x,lim_point,contextptr);
// if (b) purgenoassume(x,contextptr);
// first_try = quotesubst(ratnormal(e,contextptr),x,lim_point,contextptr);
}
bool absb=eval_abs(contextptr);
first_try=eval(first_try,eval_level(contextptr),contextptr); // moved before eval_abs(false,contextptr), must be before simplifier below
first_try=simplifier(first_try,contextptr); // for assume(a>0); limit((sqrt(2*a^3*x-x^4)-a*root(3,a^2*x))/(a-root(4,a*x^3)),x=a);
eval_abs(false,contextptr);
first_try = recursive_normal(first_try,contextptr);
//first_try=eval(first_try,1,contextptr);
eval_abs(absb,contextptr);
if (is_undef(first_try) && first_try.type==_STRNG)
return first_try;
if (!is_undef(first_try)){
// if (!direction) return first_try;
if (first_try!=unsigned_inf)
return first_try;
}
}
if (has_op(e,*at_surd) || has_op(e,*at_NTHROOT)){
// FIXME: adjust using limit/direction information
vecteur subst1,subst2;
surd2pow(e,subst1,subst2,contextptr);
gen g=subst(e,subst1,subst2,false,contextptr);
g=limit(g,x,lim_point,direction,contextptr);
return subst(g,subst2,subst1,false,contextptr);
}
e=limit_symbolic_preprocess(e,x,lim_point,direction,contextptr);
if (is_undef(e)) return e;
gen errcode=checkanglemode(contextptr);
if (is_undef(errcode))
return errcode;
if (e.type!=_SYMB) // e might be an _IDNT equal to x (limit(x*sign(x),x,0,1))
return subst(e,x,lim_point,false,contextptr);
if (e._SYMBptr->sommet==at_exp)
return exp(in_limit(e._SYMBptr->feuille,x,lim_point,direction,contextptr),contextptr);
if (e._SYMBptr->sommet==at_ln){
gen tmp=in_limit(e._SYMBptr->feuille,x,lim_point,direction,contextptr);
if (is_undef(tmp)) return tmp;
if (!is_positive(-tmp,contextptr))
return ln(tmp,contextptr);
}
gen e_copy;
// Rewrite non rational ^ and tan
e_copy=_pow2exp(tan2sincos(exact(e,contextptr),contextptr),contextptr);
// FIXME: this translate exp(i*...) to sin/cos without bugging for
// exp(exp(exp(x)/(1-1/x)))-exp(exp(exp(x)/(1-1/x-exp((-(ln(x)))*ln(ln(x))))))
if (has_i(e_copy)) {
e_copy=subst(e_copy,tan_tab,tan2sincos_tab,true,contextptr);
e_copy=subst(e_copy,exp_tab,exp2sincos_tab,true,contextptr);
}
// Rewrite constants
vecteur rv=rlvar(e_copy,false),cv;
for (int i=0;i<rv.size();++i){
if (evalf(rv[i],1,contextptr).type<_CPLX)
cv.push_back(rv[i]);
}
if (!cv.empty()){
gen cvg=tsimplify(cv,contextptr);
if (cvg.type==_VECT && cvg._VECTptr->size()==cv.size())
e_copy=subst(e_copy,cv,*cvg._VECTptr,false,contextptr);
}
if (!direction) {
if (!is_analytic(e_copy)){
gen g1=unidirectional_limit(e_copy,x,lim_point,1,contextptr);
if (is_undef(g1))
return g1;
gen g2=unidirectional_limit(e_copy,x,lim_point,-1,contextptr);
if (is_undef(g2))
return g2;
if (is_zero(ratnormal(g1-g2,contextptr)))
return g1;
return gensizeerr("Unidirectional limits are distinct "+g2.print(contextptr)+","+g1.print(contextptr));
}
// supposed to be analytic, try first series expansion
sparse_poly1 p;
p.push_back(monome(undef,0));
double ordre=mrv_begin_order;
for ( ; !p.empty() && is_undef(p.front().coeff) && (ordre<mrv_begin_order*4);ordre=1.5*ordre+1) {
p=series__SPOL1(e_copy,x,lim_point,int(ordre),0,contextptr);
if (!p.empty() && !is_undef(p.front().coeff)){
if (p.front().coeff.type==_FRAC && is_strictly_positive(-p.front().coeff._FRACptr->den,contextptr))
p.front().coeff=fraction(-p.front().coeff._FRACptr->num,-p.front().coeff._FRACptr->den);
break;
}
}
// COUT << p << endl;
if (ordre>=mrv_begin_order*4){
gen g1=unidirectional_limit(e_copy,x,lim_point,1,contextptr);
if (is_undef(g1))
return g1;
gen g2=unidirectional_limit(e_copy,x,lim_point,-1,contextptr);
if (is_undef(g2))
return g2;
if (is_zero(ratnormal(g1-g2,contextptr)))
return g1;
return gensizeerr("Unidirectional limits are distincts "+g2.print(contextptr)+","+g1.print(contextptr));
}
if (p.empty() || ck_is_strictly_positive(p.front().exponent,contextptr) ){
if (check_bounded(p.front().coeff,contextptr)==-1)
return gensizeerr("Unable to bound coefficient");
return 0;
}
if (ck_is_strictly_positive(-p.front().exponent,contextptr)){
if (p.front().exponent.type==_INT_ && p.front().exponent.val%2==0){
int s=fastsign(p.front().coeff,contextptr);
if (s==1)
return plus_inf;
if (s==-1)
return minus_inf;
}
return unsigned_inf;
}
if (is_zero(p.front().exponent)){
if (contains(p.front().coeff,x)){
return gensizeerr(gettext("Try unidirectional series"));
}
int l=check_bounded(p.front().coeff,contextptr);
if (l==-1)
return gensizeerr("Limit probably undefined, algorithm unable to handle "+p.front().coeff.print(contextptr));
return l==1?bounded_function(contextptr):p.front().coeff;
}
return gensizeerr(gettext("Series internal bug"));
}
return unidirectional_limit(e_copy,x,lim_point,direction,contextptr);
}
// return plus_inf if a > b (at x=+infinity), !0 if a#b, 0 if a < b
static gen mrv_compare(const gen & a,const gen & b,const identificateur & x,GIAC_CONTEXT){
if ((a.type!=_SYMB) && (b.type!=_SYMB))
return 1;
gen lna,lnb,l;
if ((a.type==_SYMB) && (a._SYMBptr->sommet==at_exp))
lna=a._SYMBptr->feuille;
else
lna=ln(a,contextptr);
if ((b.type==_SYMB) && (b._SYMBptr->sommet==at_exp))
lnb=b._SYMBptr->feuille;
else
lnb=ln(b,contextptr);
gen coeff,mrv_var,exponent;
sparse_poly1 p;
if (!mrv_lead_term(rdiv(lna,lnb,contextptr),x,coeff,mrv_var,exponent,p,mrv_begin_order,contextptr,false))
return gensizeerr(contextptr);
if (ck_is_strictly_positive(exponent,contextptr))
return 0;
if (is_zero(exponent))
return coeff;
return plus_inf;
}
static bool mrv_max(const vecteur & a_faster_var, const vecteur & a_coeff_ln, const vecteur & a_slower_var, const vecteur & b_faster_var,const vecteur & b_coeff_ln, const vecteur & b_slower_var,const identificateur & x, vecteur & faster_var, vecteur & coeff_ln, vecteur & slower_var,GIAC_CONTEXT){
int pos_a,pos_b;
gen s;
if (intersect(a_faster_var,b_faster_var,pos_a,pos_b))
s=normal(rdiv(a_faster_var[pos_a],b_faster_var[pos_b],contextptr),contextptr);
else {
if (a_faster_var.empty() || intersect(a_faster_var,b_slower_var,pos_a,pos_b))
s=0;
else {
if (b_faster_var.empty() || intersect(b_faster_var,a_slower_var,pos_a,pos_b) )
s=plus_inf;
else
s=mrv_compare(a_faster_var.front(),b_faster_var.front(),x,contextptr);
}
if (is_undef(s))
return false;
if (s==plus_inf){
slower_var=mergevecteur(a_slower_var,b_slower_var);
slower_var=mergevecteur(b_faster_var,slower_var);
faster_var=a_faster_var;
coeff_ln=a_coeff_ln;
return true;
}
if (is_zero(s)){
slower_var=mergevecteur(a_slower_var,b_slower_var);
slower_var=mergevecteur(a_faster_var,slower_var);
faster_var=b_faster_var;
coeff_ln=b_coeff_ln;
return true;
}
}
// s!=0 && s!=plus_inf
// size test used to get w or inv(w) at the front()
if (a_faster_var.front().symb_size()>b_faster_var.front().symb_size()){
coeff_ln=mergevecteur(b_coeff_ln,multvecteur(s,a_coeff_ln));
faster_var=mergevecteur(b_faster_var,a_faster_var);
slower_var=mergevecteur(b_slower_var,a_slower_var);
}
else {
coeff_ln=mergevecteur(a_coeff_ln,multvecteur(inv(s,contextptr),b_coeff_ln));
faster_var=mergevecteur(a_faster_var,b_faster_var);
slower_var=mergevecteur(a_slower_var,b_slower_var);
}
return true;
}
// Find most rapidly varying subexpression of e and res
static bool mrv(const gen & e,const identificateur & x,vecteur & faster_var,vecteur & coeff_ln, vecteur & slower_var,GIAC_CONTEXT){
// Find all var of e depending on x
vecteur v0(lvarx(e,x));
// Find mrv of these vars
vecteur::const_iterator it=v0.begin(),itend=v0.end();
for (;it!=itend;++it){
if (equalposcomp(faster_var,*it) || equalposcomp(slower_var,*it))
continue;
if (it->type!=_SYMB){
if (!mrv_max(faster_var,coeff_ln,slower_var,
vecteur(1,*it),vecteur(1,plus_one),vecteur(0),
x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
gen temp=*it;
if (temp._SYMBptr->sommet==at_ln){
if (!mrv(temp._SYMBptr->feuille,x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
if (temp._SYMBptr->sommet==at_Psi && temp._SYMBptr->feuille.type==_VECT){
if (!mrv(temp._SYMBptr->feuille[0],x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
if (temp._SYMBptr->sommet==at_lower_incomplete_gamma || temp._SYMBptr->sommet==at_igamma_exp){
gen & f = temp._SYMBptr->feuille;
if (depend(f[0],x))
return false;
if (!mrv(f[1],x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
if (temp._SYMBptr->sommet==at_pow)
temp=symbolic(at_exp,(*(temp._SYMBptr->feuille._VECTptr))[1]*ln((*(temp._SYMBptr->feuille._VECTptr))[0],contextptr));
if (temp._SYMBptr->sommet==at_euler_mac_laurin){
gen & f = temp._SYMBptr->feuille;
if (f.type==_VECT && f._VECTptr->size()==5){
if (!mrv(f[0],x,faster_var,coeff_ln,slower_var,contextptr) ||
!mrv(f[3],x,faster_var,coeff_ln,slower_var,contextptr) ||
!mrv(f[4],x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
}
if (temp._SYMBptr->feuille.type==_VECT){
*logptr(contextptr) << gettext("Limit probably undefined, algorithm unable to handle ")+temp.print(contextptr) << endl;
return false;
}
gen l=in_limit(temp._SYMBptr->feuille,x,plus_inf,0,contextptr);
if (is_undef(l) || (l==unsigned_inf && temp._SYMBptr->sommet!=at_cos && temp._SYMBptr->sommet!=at_sin && temp._SYMBptr->sommet!=at_erfs)){
*logptr(contextptr) << gettext("Undef/Unsigned Inf encountered in limit") << endl;
return false;
}
if (!is_inf(l)){
if (!mrv(temp._SYMBptr->feuille,x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
if (temp._SYMBptr->sommet==at_exp){
if (!mrv(temp._SYMBptr->feuille,x,faster_var,coeff_ln,slower_var,contextptr) ||
!mrv_max(faster_var,coeff_ln,slower_var,
vecteur(1,temp),vecteur(1,plus_one),vecteur(0),
x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
// (semi-)tractable functions?
gen shift_coeff;
if (!temp._SYMBptr->sommet.ptr()->series_expansion){
invalidserieserr(string(gettext("no taylor method for "))+temp._SYMBptr->sommet.ptr()->print(contextptr));
return false;
}
gen test=temp._SYMBptr->sommet.ptr()->series_expansion(l,0,temp._SYMBptr->sommet,0,shift_coeff,contextptr); // fixme: 0 should be image_of_direction
if (!is_undef(test)){
if (!mrv(temp._SYMBptr->feuille,x,faster_var,coeff_ln,slower_var,contextptr))
return false;
continue;
}
// fixme: add support for integrals and sums
if (temp._SYMBptr->sommet!=at_exp)
return false; // setsizeerr(gettext("series.cc/mrv"));
}
return true;
}
bool pnormal(sparse_poly1 & v,GIAC_CONTEXT){
sparse_poly1::const_iterator it=v.begin(),itend=v.end();
sparse_poly1 p;
gen e;
for (;it!=itend;++it){
e=recursive_normal(it->coeff,contextptr);
if (!is_zero(e))
p.push_back(monome(e,it->exponent));
}
swap(p,v);
return true;
}
// find asymptotic equivalent of e in terms of the mrv var of e
static bool mrv_lead_term(const gen & e,const identificateur & x,gen & coeff, gen & mrv_var, gen & exponent,sparse_poly1 & q,int begin_ordre,GIAC_CONTEXT,bool series){
if (!contains(e,x)){
coeff=ratnormal(e,contextptr);
mrv_var=x;
exponent=0;
q.clear();
q.push_back(monome(coeff,0));
return true;
}
vecteur faster_var,coeff_ln,slower_var;
gen ecopy(e);
if (!mrv(ecopy,x,faster_var,coeff_ln,slower_var,contextptr))
return false;
int rescaling=0; // number of ln(x) -> x substitution
// if the mrv contains x, we must change scale ln(x) -> x and x -> e^x
for (;equalposcomp(faster_var,x);++rescaling){
upscale(ecopy,x,contextptr);
// next test needed to avoid infinite recursion
// if there is an e^x inside the new mrv is m rescaled
if (contains(ecopy,exp(x,contextptr))){
gen temp(faster_var);
upscale(temp,x,contextptr);
faster_var=*temp._VECTptr;
}
else {
faster_var.clear();
slower_var.clear();
coeff_ln.clear();
if (!mrv(ecopy,x,faster_var,coeff_ln,slower_var,contextptr))
return false;
}
}
if (faster_var.empty()){
coeff=ratnormal(ecopy,contextptr);
mrv_var=x;
exponent=0;
q.clear();
q.push_back(monome(coeff,0));
return true;
}
// now find w, the mrv element -> 0 and express other elements of the mrv
// algo: sort faster_var by symb_size
// w is the shortest one, set g=ln(w)
// replace the next shortest at position pos
// by w^coeff_ln[pos]* exp(ln(faster_var[pos])-coeff_ln[pos]*g)
// then replace faster_var[0] by w above
// go on, the replace operation should be done with
// previous ordered_faster by their expression in terms of w
// At the end replace w by 1/w if w -> plus_inf
bool dont_invert=is_zero(in_limit(faster_var.front(),x,plus_inf,0,contextptr));
vecteur faster_var_tmp(faster_var);
stable_sort(faster_var.begin(),faster_var.end(),symb_size_less_t());
identificateur w(" w");
vecteur faster_var_subst(1,w);
gen g=faster_var.front()._SYMBptr->feuille;
iterateur it=faster_var.begin()+1,itend=faster_var.end();
gen c,f;
for (;it!=itend;++it){
int p=equalposcomp(faster_var_tmp,*it);
// assert(p);
c=coeff_ln[p-1];
f=subst(it->_SYMBptr->feuille,faster_var,faster_var_subst,false,contextptr);
faster_var_subst.push_back(pow(w,c,contextptr)*exp(normal(f-c*g,contextptr),contextptr));
}
// subst in original expression and make the asymptotic expansion
double ordre=begin_ordre;
f=subst(ecopy,faster_var,faster_var_subst,false,contextptr);
if (!dont_invert)
f=subst(f,w,inv(w,contextptr),false,contextptr);
if (faster_var.front().is_symb_of_sommet(at_exp)){
// replace ln(exp(g)^k*...) by k*g+ln(...)
vecteur lf(lop(f,at_ln)),lf1,lf2;
iterateur it=lf.begin(),itend=lf.end();
for (;it!=itend;++it){
gen argln=it->_SYMBptr->feuille;
sparse_poly1 p=series__SPOL1(argln,w,0,int(ordre),1,contextptr);
if (!p.empty() && !is_undef(p.front().coeff) ){
if (!is_zero(p.front().exponent))
argln=argln*symbolic(at_pow,gen(makevecteur(w,-p.front().exponent),_SEQ__VECT));
lf1.push_back(*it);
lf2.push_back(p.front().exponent*(dont_invert?g:-g)+symbolic(at_ln,argln));
}
}
if (!lf1.empty())
f=subst(f,lf1,lf2,false,contextptr);
}
sparse_poly1 p;
p.push_back(monome(undef,0));
// FIXME: if ordre>max_series it might return a wrong answer here
for (unsigned count=0; (ordre<max_series_expansion_order) && !p.empty() &&
(p.size()>=1) && is_undef(p.front().coeff) ;++count,ordre=ordre*1.5+1){
bool inv=false;
p=series__SPOL1(f,w,0,int(ordre),1,contextptr);
// if (count==2 && p.size()==1 && is_undef(p.front().coeff)){ f=ratnormal(f,contextptr); p=series__SPOL1(f,w,0,int(ordre),1,contextptr); }
#ifdef TIMEOUT
control_c();
#endif
if (ctrl_c || interrupted || is_undef(p.front().exponent))
return false;
if (!p.empty() && !is_undef(p.front().coeff) ){
// substitution of ln(w) by +-g should not be useful anymore
gen tmp=ratnormal(subst(p.front().coeff,ln(w,contextptr),(dont_invert?g:-g),false,contextptr),contextptr);
if (is_undef(tmp) ){
inv=true;
p=spdiv(sparse_poly1(1,monome(1,0)),p,contextptr);
if (is_undef(p))
return false;
pnormal(p,contextptr);
}
}
// cerr << p << endl;
// replace ln( w) in coeff by g or -g
if (dont_invert)
p=subst(p,ln(w,contextptr),g,false,contextptr);
else
p=subst(p,ln(w,contextptr),-g,false,contextptr);
if (inv){
p=spdiv(sparse_poly1(1,monome(1,0)),p,contextptr);
if (is_undef(p))
return false;
pnormal(p,contextptr);
}
}
if (!p.empty())
p.front().exponent=simplify(p.front().exponent,contextptr);
q=p;
if (!p.empty()){
bool done=false;
// check for exponent 0 at front()
if (is_zero(p.front().exponent) && contains(p.front().coeff,x) && !is_zero(derive(p.front().coeff,x,contextptr))){
// if p is uniquely composed of this coeff, expand
if (!mrv_lead_term(p.front().coeff,x,coeff,mrv_var,exponent,p,mrv_begin_order,contextptr,false))
return false;
if (p.empty()
// test below allow expanding series(ln(x+1),x=inf)
// the boolean series was added
// otherwise testlimit would not work correctly
|| (series && p.size()==1 && q.size()>1 &&!is_undef(p.front().coeff))
){
done=false;
p=q;
}
else {
if (q.size()>1 && !is_undef(p.back().coeff))
p.push_back(monome(undef,p.back().exponent+begin_ordre));
q=p;
done=true;
}
}
if (!done) {
if (dont_invert)
mrv_var=faster_var.front();
else
mrv_var=inv(faster_var.front(),contextptr);
coeff = p.front().coeff;
exponent = p.front().exponent;
}
}
// mrv_var is w as function of x, rescaled using the int variable rescaling
// coeff must be rescaled as well
sparse_poly1::iterator it0=q.begin(),it1=q.end();
for (;rescaling;--rescaling){
downscale(mrv_var,x,contextptr);
downscale(coeff,x,contextptr);
for (sparse_poly1::iterator it=it0;it!=it1;++it)
downscale(it->coeff,x,contextptr);
}
return true;
}
bool intersect(const vecteur & a,const vecteur &b,int & pos_a,int & pos_b){
vecteur res;
if (a.empty() || b.empty())
return false;
vecteur::const_iterator it=a.begin(),itend=a.end();
for (;it!=itend;++it)
pos_b=equalposcomp(b,*it);
if (pos_b){
--pos_b;
pos_a=int(it-a.begin());
return true;
}
return false;
}
static int convert_to_direction(const gen & l){
if (is_one(l) || l==at_plus)
return 1;
if (is_minus_one(l) || l==at_binary_minus || l==at_neg)
return -1;
if (is_zero(l))
return 0;
return -2;
}
// Main limit entry point
gen limit(const gen & e,const identificateur & x,const gen & lim_point,int direction,GIAC_CONTEXT){
if (is_undef(lim_point))
return lim_point;
// Insert here code for cleaning limit remember
int save_series_flags=series_flags(contextptr);
series_flags(save_series_flags | 8,contextptr);
// sincosinf.clear();
gen e_exact=exact(e,contextptr);
gen lim_point_exact=exact(lim_point,contextptr);
gen l=in_limit(e_exact,x,lim_point_exact,direction,contextptr);
if (e.is_approx() || lim_point.is_approx())
l=evalf(l,1,contextptr);
series_flags(save_series_flags,contextptr);
// vecteur sincosinfsub(sincosinf.size(),undef);
// l=eval(subst(l,sincosinf,sincosinfsub));
return l;
}
gen quotedlimit(const gen & e,const identificateur & x,const gen & lim_point,int direction,GIAC_CONTEXT){
vecteur v(1,exact(e,contextptr));
v=quote_eval(v,vecteur(1,x),contextptr);
return limit(v[0],x,lim_point,direction,contextptr);
}
// "unary" version
static const char _limit_s []="limit";
gen _limit(const gen & args,GIAC_CONTEXT){
if ( args.type==_STRNG && args.subtype==-1) return args;
if (args.type!=_VECT)
return quotedlimit(args,*vx_var._IDNTptr,0,0,contextptr);
vecteur v =*args._VECTptr;
int s=int(v.size());
if (!s)
toofewargs(_limit_s);
gen G=v[0];
if (s==1)
return quotedlimit(G,*vx_var._IDNTptr,0,0,contextptr);
gen e=v[1];
if (s==2){
if (calc_mode(contextptr)==1 && !v[1].is_symb_of_sommet(at_equal))
return _limit(makesequence(G,ggb_var(G),e),contextptr);
if (e.type==_IDNT)
return quotedlimit(G,*e._IDNTptr,0,0,contextptr);
if (e.type!=_SYMB)
return gentypeerr(contextptr);
if (!is_equal(e))
return gensizeerr(contextptr);
gen x=(*(e._SYMBptr->feuille._VECTptr))[0];
if (x.type!=_IDNT)
return gensizeerr(contextptr);
return quotedlimit(G,*x._IDNTptr,(*(e._SYMBptr->feuille._VECTptr))[1],0,contextptr);
}
if (s>2)
v[2]=eval(v[2],1,contextptr);
if (s>3)
v[3]=eval(v[3],1,contextptr);
if (s==3){
gen arg3=v[2];
if (e.type==_IDNT)
return quotedlimit(G,*e._IDNTptr,arg3,0,contextptr);
if (e.type!=_SYMB){
if (is_one(arg3)||is_minus_one(arg3))
return quotedlimit(G,*ggb_var(G)._IDNTptr,e,int(evalf_double(arg3,1,contextptr)._DOUBLE_val),contextptr);
return gentypeerr(contextptr);
}
if (!is_equal(e)){
if (is_one(arg3)||is_minus_one(arg3))
return quotedlimit(G,*ggb_var(G)._IDNTptr,e,int(evalf_double(arg3,1,contextptr)._DOUBLE_val),contextptr);
return gensizeerr(contextptr);
}
gen x=(*(e._SYMBptr->feuille._VECTptr))[0];
if (x.type!=_IDNT)
return gensizeerr(contextptr);
return quotedlimit(G,*x._IDNTptr,(*(e._SYMBptr->feuille._VECTptr))[1],convert_to_direction(v[2]),contextptr);
}
if (s>4)
return gentoomanyargs(_limit_s);
if (e.type!=_IDNT)
return gentypeerr(contextptr);
return quotedlimit(G,*e._IDNTptr,v[2],convert_to_direction(v[3]),contextptr);
}
static string texprintaslimit(const gen & g,const char * orig_s,GIAC_CONTEXT){
string s("\\lim ");
if (g.type!=_VECT)
return s+gen2tex(g,contextptr);
vecteur v(*g._VECTptr);
int l(int(v.size()));
if (!l)
return s;
if (l==1)
return s+gen2tex(v[0],contextptr);
if (l==2)
return s+"_{"+gen2tex(v[1],contextptr)+"}"+gen2tex(v[0],contextptr);
// directional limit
if (l==3){
if (is_one(v[2]))
return s+"_{"+gen2tex(v[1],contextptr)+"^+}"+gen2tex(v[0],contextptr);
if (is_minus_one(v[2]))
return s+"_{"+gen2tex(v[1],contextptr)+"^-}"+gen2tex(v[0],contextptr);
else return s+"_{"+gen2tex(v[1],contextptr)+"}"+gen2tex(v[0],contextptr);
}
return s;
}
static define_unary_function_eval4 (__limit,&_limit,_limit_s,0,&texprintaslimit);
define_unary_function_ptr5( at_limit ,alias_at_limit,&__limit,_QUOTE_ARGUMENTS,true);
#if 0
static const char _lim_s []="lim";
static define_unary_function_eval4 (__lim,&_limit,_lim_s,0,&texprintaslimit);
define_unary_function_ptr5( at_lim ,alias_at_lim,&__lim,_QUOTE_ARGUMENTS,true);
#endif
// like sparse_poly12gen, but if there is only 1 term and no remainder
// expand it, l.1976
static gen sparse_poly12gen_expand(const sparse_poly1 & s,const identificateur & x,const gen & mrv_var,int ordre,gen & remains,bool with_order_size,GIAC_CONTEXT){
if (s.size()!=1 || !contains(s.front().coeff,x) )
return sparse_poly12gen(s,mrv_var,remains,with_order_size);
gen afaire=s.front().coeff,mrv_fait(mrv_var),a,b,c,exponent(s.front().exponent);
if (mrv_fait.is_symb_of_sommet(at_inv) && mrv_fait._SYMBptr->feuille.is_symb_of_sommet(at_exp))
mrv_fait=symbolic(at_exp,symbolic(at_neg,mrv_fait._SYMBptr->feuille._SYMBptr->feuille));
if (mrv_fait.is_symb_of_sommet(at_exp)){
// search embedded ln if mrv_var is an exp var
mrv_fait=mrv_fait._SYMBptr->feuille;
vecteur l(lop(mrv_fait,at_ln));
int ls=int(l.size());
for (int i=0;i<ls;++i){
identificateur tx(" x");
gen tmpx(tx);
gen mrv_temp=subst(mrv_fait,l[i],tmpx,true,contextptr);
if (is_linear_wrt(mrv_temp,tmpx,a,b,contextptr)){
// extract constant part of a in c using decompose_plus
if (a.is_symb_of_sommet(at_plus) && a._SYMBptr->feuille.type==_VECT){
c=0;
vecteur non_constant;
decompose_plus(*a._SYMBptr->feuille._VECTptr,x,non_constant,c,contextptr);
a=_plus(non_constant,contextptr);
afaire=afaire*pow(l[i]._SYMBptr->feuille,c*exponent,contextptr);
mrv_fait=a*l[i]+b;
}
}
}
mrv_fait=symbolic(at_exp,mrv_fait);
}
gen coeff2,mrv_var2,exponent2;
sparse_poly1 s2;
if (!mrv_lead_term(afaire,x,coeff2,mrv_var2,exponent2,s2,ordre,contextptr,true))
return false;
return sparse_poly12gen_expand(s2,x,mrv_var2,ordre,remains,with_order_size,contextptr)*pow(mrv_fait,exponent,contextptr);
}
static gen in_series(const gen & e0,const identificateur & x,const gen & lim_point,int ordre,int direction,GIAC_CONTEXT){
gen e=limit_symbolic_preprocess(e0,x,lim_point,direction,contextptr);
if (is_undef(e)) return e;
gen errcode=checkanglemode(contextptr);
if (is_undef(errcode)) return errcode;
if (lim_point==plus_inf){
gen coeff,mrv_var,exponent,remains;
sparse_poly1 s;
if (!mrv_lead_term(e,x,coeff,mrv_var,exponent,s,ordre,contextptr,true)){
#ifdef EMCC
return undef;
#else
return gensizeerr(contextptr);
#endif
}
if (series_flags(contextptr) & (1<<4) )
return s; // no back conversion if bit 4 is set
return sparse_poly12gen_expand(s,x,mrv_var,ordre,remains,true,contextptr);
}
if (lim_point==minus_inf){
gen coeff,mrv_var,exponent,remains;
sparse_poly1 s;
if (!mrv_lead_term(subst(e,x,-x,false,contextptr),x,coeff,mrv_var,exponent,s,ordre,contextptr,true))
return gensizeerr(contextptr);
if (series_flags(contextptr) & (1<<4) )
return s; // no back conversion if bit 4 is set
return subst(sparse_poly12gen_expand(s,x,mrv_var,ordre,remains,true,contextptr),x,-x,false,contextptr);
}
if (direction==1){
gen ecopy=subst(e,x,lim_point+inv(x,contextptr),false,contextptr);
gen coeff,mrv_var,exponent,remains;
sparse_poly1 s;
if (!mrv_lead_term(ecopy,x,coeff,mrv_var,exponent,s,ordre,contextptr,true))
return gensizeerr(contextptr);
if (series_flags(contextptr) & (1<<4) )
return s; // no back conversion if bit 4 is set
return subst(sparse_poly12gen_expand(s,x,mrv_var,ordre,remains,true,contextptr),x,inv(x-lim_point,contextptr),false,contextptr);
}
if (direction==-1){
gen ecopy=subst(e,x,lim_point-inv(x,contextptr),false,contextptr);
gen coeff,mrv_var,exponent,remains;
sparse_poly1 s;
if (!mrv_lead_term(ecopy,x,coeff,mrv_var,exponent,s,ordre,contextptr,true))
return gensizeerr(contextptr);
if (series_flags(contextptr) & (1<<4) )
return s; // no back conversion if bit 4 is set
return subst(sparse_poly12gen_expand(s,x,mrv_var,ordre,remains,true,contextptr),x,inv(lim_point-x,contextptr),false,contextptr);
}
gen remains;
switch (e.type){
case _INT_: case _ZINT: case _DOUBLE_: case _CPLX:
return e;
case _IDNT:
if ( !ordre && (*e._IDNTptr==x) )
return lim_point+(x-lim_point)*order_size(x-lim_point,contextptr);
else
return e;
case _SYMB: {
sparse_poly1 s;
s=ck_series__SPOL1(e,x,lim_point,ordre,direction,contextptr);
if (series_flags(contextptr) & (1<<4) )
return s; // no back conversion if bit 4 is set
return sparse_poly12gen(s,x-lim_point,remains,true);
}
default:
return symbolic(at_series,makesequence(e,x,lim_point,ordre));
}
}
// Main series entry point
gen series(const gen & e,const identificateur & x,const gen & lim_point,int ordre,int direction,GIAC_CONTEXT){
int save_series_flags=series_flags(contextptr);
series_flags(save_series_flags | 8,contextptr);
if (has_op(e,*at_surd) || has_op(e,*at_NTHROOT)){
vecteur subst1,subst2;
surd2pow(e,subst1,subst2,contextptr);
gen g=subst(e,subst1,subst2,false,contextptr);
g=series(g,x,lim_point,ordre,direction,contextptr);
series_flags(save_series_flags,contextptr);
return subst(g,subst2,subst1,false,contextptr);
}
if (e.type==_VECT){
vecteur res = *e._VECTptr;
int l=int(res.size());
for (int i=0;i<l;++i){
res[i]=in_series(_pow2exp(tan2sincos(res[i],contextptr),contextptr),x,lim_point,ordre,direction,contextptr);
}
series_flags(save_series_flags,contextptr);
return res;
}
gen res=in_series(_pow2exp(tan2sincos(e,contextptr),contextptr),x,lim_point,ordre,direction,contextptr);
series_flags(save_series_flags,contextptr);
return res;
}
gen series(const gen & e,const gen & vars,const gen & lim_point,int ordre,int direction,GIAC_CONTEXT){
gen x,l;
if (is_equal(vars)){
// vars= x==lim_point, overwrites lim_point definition
// direction is given by lim_point (for interactive input)
x = (*(vars._SYMBptr->feuille._VECTptr)) [0];
l = (*(vars._SYMBptr->feuille._VECTptr)) [1];
if (lim_point.type!=_INT_)
return gensizeerr(contextptr);
if (absint(lim_point.val)>0){
if (!direction && absint(ordre)<2)
direction=ordre;
ordre=absint(lim_point.val);
}
else
direction = lim_point.val;
}
else {
x=vars;
l=lim_point;
}
if (x.type==_VECT && l.type==_VECT){
vecteur &v=*x._VECTptr;
gen h(identificateur(" h"));
vecteur w=addvecteur(*l._VECTptr,multvecteur(h,v));
gen newe=subst(e,v,w,false,contextptr);
sparse_poly1 res=series__SPOL1(newe,*h._IDNTptr,zero,ordre,direction,contextptr);
poly_truncate(res,ordre,contextptr);
if (!res.empty() && is_undef(res.back().coeff))
res.pop_back();
// order term has been removed
gen remains;
gen r=sparse_poly12gen(res,1,remains,false);
return subst(r,v,subvecteur(v,*l._VECTptr),false,contextptr);
}
if (x.type!=_IDNT){
identificateur xx("x");
gen res=series(subst(e,x,xx,false,contextptr),xx,l,ordre,direction,contextptr);
return subst(res,xx,x,false,contextptr);
}
return series(e,*x._IDNTptr,l,ordre,direction,contextptr);
}
gen series(const gen & e,const gen & vars,const gen & lim_point,const gen & ordre0,GIAC_CONTEXT){
gen ordre(ordre0);
if (!is_integral(ordre))
return gensizeerr(contextptr);
return series(e,vars,lim_point,ordre.val,0,contextptr); // it's the direction
}
// "unary" version
static const char _series_s []="series";
gen _series(const gen & args,GIAC_CONTEXT){
if ( args.type==_STRNG && args.subtype==-1) return args;
if (args.type==_SPOL1)
return args;
if (args.type==_VECT && args._VECTptr->size()==2 && args._VECTptr->front().type==_STRNG && args._VECTptr->back().type==_INT_){
int n=args._VECTptr->back().val;
if (n<=0 || n>1024)
return gensizeerr("Default series order must be >0 and <=1024");
series_default_order(n,contextptr);
return _series(args._VECTptr->front(),contextptr);
}
if (args.type==_STRNG && args._STRNGptr->size()==1){
char ch=(*args._STRNGptr)[0];
gen h(*args._STRNGptr,contextptr);
series_variable_name(ch,contextptr);
sparse_poly1 s(1,monome(1,1));
sto(s,h,contextptr);
series_flags(contextptr) = series_flags(contextptr) | (1<<5);
*logptr(contextptr) << "Setting " << ch << " as series variable name" << endl;
string Os=abs_calc_mode(contextptr)==38?"b":"O";
gen O(Os,contextptr);
if (eval(O,1,contextptr)!=O)
*logptr(contextptr) << "Purge "<<Os<<" if you want to use "<<Os<<"("<< h <<"^...) notation"<< endl;
else {
gen prog=symb_program(vx_var,0,vx_var*symbolic(at_order_size,h),contextptr);
*logptr(contextptr) << "Assigning "<<Os<<" so that you can use use "<<Os<<"("<< h<<"^...) notation"<< endl;
sto(prog,O,contextptr);
series_flags(contextptr)=series_flags(contextptr) | (1<<6) ;
}
return s;
}
if (args.type!=_VECT)
return series(args,vx_var,0,series_default_order(contextptr),0,contextptr);
vecteur v=*args._VECTptr;
if (v.empty())
return gensizeerr(contextptr);
if (v.back().type==_INT_ && v.back().subtype==_INT_MAPLECONVERSION && v.back().val==_POLY1__VECT){
gen p=v.back();
v.pop_back();
gen res=_series(gen(v,_SEQ__VECT),contextptr);
res=_convert(makesequence(res,p),contextptr);
return res;
}
v[0]=Heavisidetosign(when2sign(piecewise2when(v[0],contextptr),contextptr),contextptr);
int s=int(v.size());
if (!s)
toofewargs(_series_s);
if (s==1)
return series( v[0],vx_var,0,series_default_order(contextptr),0,contextptr);
if (s==2){
if (v[1].type==_INT_)
return series( v[0],vx_var,0,v[1],contextptr);
return series( v[0],v[1],0,series_default_order(contextptr),contextptr);
}
if (s==3){
if ( (v[1].type==_VECT && v[2].type==_VECT) ||
( v[1].type==_IDNT || ( v[1].type==_SYMB && (v[1]._SYMBptr->sommet==at_equal || v[1]._SYMBptr->sommet==at_equal2 || v[1]._SYMBptr->sommet==at_at ) ) )
)
return series( v[0],v[1],v[2],series_default_order(contextptr),contextptr);
return series( v[0],symbolic(at_equal,makesequence(vx_var,v[1])),v[2],series_default_order(contextptr),contextptr);
}
if (s==4)
return series( v[0],v[1],v[2],v[3],contextptr);
if (s>5 || v[3].type!=_INT_ || v[4].type!=_INT_)
return gentoomanyargs(_series_s);
return series(v[0],v[1],v[2],v[3].val,v[4].val,contextptr);
}
static define_unary_function_eval (__series,&_series,_series_s);
define_unary_function_ptr5( at_series ,alias_at_series,&__series,0,true);
// "unary" version
static const char _revert_s []="revert";
gen _revert(const gen & args,GIAC_CONTEXT){
if ( args.type==_STRNG && args.subtype==-1) return args;
if (args.type==_SPOL1){
const sparse_poly1 & s=*args._SPOL1ptr;
if (s.empty() || s.front().exponent==0)
return gensizeerr("Not invertible for composition");
sparse_poly1 res;
if (!prevert(s,res,contextptr))
return gensizeerr("Not invertible for composition");
return res;
}
vecteur v=gen2vecteur(args);
if (v.empty())
return gensizeerr(contextptr);
gen g=v[0],x;
if (v.size()==1)
x=vx_var;
else
x=v[1];
if (x.type!=_IDNT){
identificateur idx(" trevert");
return _revert(subst(args,x,idx,false,contextptr),contextptr);
}
// find ordre
int ordre=series_default_order(contextptr);
if (v.size()>2 && v[2].type==_INT_)
ordre=v[2].val;
vecteur w=lop(g,at_order_size);
if (w.size()==1){
gen xn=derive(g,w.front(),contextptr);
if (is_undef(xn)) return xn;
if (xn.is_symb_of_sommet(at_pow)){
gen & f=xn._SYMBptr->feuille;
if (f.type==_VECT && f._VECTptr->size()==2 && f._VECTptr->back().type==_INT_){
ordre=f._VECTptr->back().val;
w.clear();
g=subst(g,w.front(),0,false,contextptr);
}
}
}
if (!w.empty())
return gensizeerr(contextptr);
sparse_poly1 p=series__SPOL1(g,*x._IDNTptr,zero,ordre,0,contextptr),res;
if (!prevert(p,res,contextptr))
return gensizeerr(contextptr);
gen remains;
return sparse_poly12gen(res,x,remains,false);
}
static define_unary_function_eval (__revert,&_revert,_revert_s);
define_unary_function_ptr5( at_revert ,alias_at_revert,&__revert,0,true);
static const char _bounded_function_s []="bounded_function";
gen _bounded_function(const gen & args,GIAC_CONTEXT){
if ( args.type==_STRNG && args.subtype==-1) return args;
return symbolic(at_bounded_function,args);
}
gen bounded_function(GIAC_CONTEXT){
int i=bounded_function_no(contextptr);
++i;
bounded_function_no(i,contextptr);
return symbolic(at_bounded_function,i);
}
static define_unary_function_eval (__bounded_function,&_bounded_function,_bounded_function_s);
define_unary_function_ptr5( at_bounded_function ,alias_at_bounded_function,&__bounded_function,0,true);
// internal function, used to replace sum for limit/series
// args = expression, antiderivative, variable, lower_bound, upper_bound
static const char _euler_mac_laurin_s []="euler_mac_laurin";
gen _euler_mac_laurin(const gen & args,GIAC_CONTEXT){
if ( args.type==_STRNG && args.subtype==-1) return args;
return symbolic(at_euler_mac_laurin,args);
}
static define_unary_function_eval (__euler_mac_laurin,&_euler_mac_laurin,_euler_mac_laurin_s);
define_unary_function_ptr5( at_euler_mac_laurin ,alias_at_euler_mac_laurin,&__euler_mac_laurin,0,true);
bool convert_to_euler_mac_laurin(const gen & g,const identificateur & n,gen & res,GIAC_CONTEXT){
if (g.is_symb_of_sommet(at_sum)){
gen & f = g._SYMBptr->feuille;
if (f.type!=_VECT || f._VECTptr->size()!=4)
return false;
gen l=in_limit((f[3]-f[2])/n,n,plus_inf,1,contextptr);
if (is_zero(l) || is_undef(l) || is_inf(l))
return false;
// check that the expression to be summed has a derivative
// which is a o(expression) as n -> inf
gen f0=f._VECTptr->front();
gen x =f[1];
if (x.type!=_IDNT){
*logptr(contextptr) << gettext("Unable to convert to euler mac laurin");
return false;
}
gen f0prime=derive(f0,x,contextptr), f03=derive(f0prime,x,contextptr);
f03=derive(f03,x,contextptr);
if (is_undef(f03)) return false;
l=in_limit(f03/f0prime,n,plus_inf,1,contextptr);
if (!is_zero(l))
return false;
gen remains;
gen F0=integrate_gen_rem(f0,x,remains,contextptr);
if (!is_zero(remains) || is_undef(F0))
return false;
res=symbolic(at_euler_mac_laurin,gen(makevecteur(f0,F0,x,f[2],f[3]),_SEQ__VECT));
return true;
}
vecteur v=lop(g,at_sum);
vecteur w=v;
int s=int(v.size());
for (int i=0;i<s;++i){
if (!convert_to_euler_mac_laurin(v[i],n,w[i],contextptr))
return false;
}
res=subst(g,v,w,false,contextptr);
return true;
}
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC