ifactor.cc 127 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
// -*- mode:C++ ; compile-command: "g++-3.4 -I.. -g -c ifactor.cc -DHAVE_CONFIG_H -DIN_GIAC" -*-
#include "giacPCH.h"
#ifndef __MINGW_H
#define GIAC_MPQS // define if you want to use giac for sieving 
#endif



#include "path.h"
/*
 *  Copyright (C) 2003,14 R. De Graeve & B. Parisse, 
 *  Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

using namespace std;
#ifdef GIAC_HAS_STO_38
//#undef clock
//#undef clock_t
#else
#include <fstream>
//#include <unistd.h> // For reading arguments from file
#include "ifactor.h"
#include "pari.h"
#include "usual.h"
#include "sym2poly.h"
#include "rpn.h"
#include "prog.h"
#include "misc.h"
#include "giacintl.h"
#endif

#ifdef GIAC_HAS_STO_38
#define BESTA_OS
#endif
// Trying to make ifactor(2^128+1) work on ARM
#if defined(RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
//#define OLD_AFACT
#define GIAC_ADDITIONAL_PRIMES 16// if defined, additional primes are used in sieve
#else
#define GIAC_ADDITIONAL_PRIMES 32// if defined, additional primes are used in sieve
#endif


#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

#if 0
  struct int256 {
    longlong a;
    ulonglong b,c,d;
  };
  struct int128 {
    longlong a;
    ulonglong b;
  };

  void sub(int256 A,int b,int256 & C){
    bool Apos=A.a>=0;
    if (Apos){
      if (b<0){
	add(A,b,C);
	return;
      }
      bool carry=A.d<b;
      A.d -= b;
      if (carry){
	carry=A.c<1;
	A.c--;
	if (carry){
	  carry=A.b<1;
	  A.b--;
	  if (carry)
	    A.a--;
	}
      }
      C=A;
      return;
    }
    A.a = -A.a;
    sub(A,-b,C);
    C.a = -C.a;
  }

  void add(const int192 & A,int b,int192 & C){
    bool Apos=A.a>=0;
    if (Apos){
      if (b<0){
	sub(A,-b,C);
	return;
      }
      A.d += b;
      if (A.d<b){
	A.c++;
	if (A.c==0){
	  A.b++;
	  if (A.n==0)
	    A.a++;
	}
      }
      C=A;
      return;
    }
    A.a = -A.a;
    sub(A,-b,C);
    C.a = -C.a;
  }

  inline void int128tounsigned(const int128 & A,unsigned & Aa,unsigned & Ab,unsigned & Ac,unsigned & Ad){
    Aa = (* ((unsigned *) (&A.a)+1)) & 0x7fff;
    Ab = *(unsigned *) A.a;
    Ac = *( (unsigned *) &A.b)+1;
    Ad = *(unsigned *) A.d;
  }

  void mul(int128 A,int128 B,int256 & C){
    bool neg=(A.a<0) ^ (B.a<0);
    unsigned A3,A2,A1,A0,B3,B2,B1,B0,C6,C5,C4,C3,C2,C1,C0;
    int128tounsigned(A,A3,A2,A1,A0);
    int128tounsigned(B,B3,B2,B1,B0);
    ulonglong p1,p2,p3,p;
    p1=A0; p2=B0;
    p3=p1*p2;
    C0=p3;
    C1=p3>>32;
    p1=A1;
    p = p1*p2;
    p += C1;
    unsigned short carry = (p<C1);
    p1=A0; p2=B1;
    p3=p1*p2;
    p += p3;
    carry += (p<p3);
    C1 = p;
    C2 = p>>32;
    C2 += carry;
    carry = (C2<carry);
  }

#endif

  const short int giac_primes[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973};

  // #define PRIME_SIEVE
#ifdef PRIME_SIEVE  
  // fill Erathosthene sieve crible for searching primes up to 2*crible.size()*32+1
  // crible is a (packed) bit array, crible[i] is true if 2*i+1 is a prime
  // crible must be set to true at startup
  void fill_crible(vector<unsigned> & crible,unsigned p){
    crible.resize((p-1)/64+1);
    unsigned cs=crible.size();
    unsigned lastnum=64*cs;
    unsigned lastsieve=int(std::sqrt(double(lastnum)));
    unsigned primesieved=1;
    crible[0] = 0xfffffffe; // 1 is not prime and not sieved (2 is not sieved)
    for (unsigned i=1;i<cs;++i)
      crible[i]=0xffffffff;
    for (;primesieved<=lastsieve;primesieved+=2){
      // find next prime
      unsigned pos=primesieved/2;
      for (;pos<cs;pos++){
	if (crible[pos/32] & (1 << (pos %32)))
	  break;
      }
      // set mutiples of (2*pos+1) to false
      primesieved=2*pos+1;
      unsigned n=3*primesieved;
      for (;n<lastnum;n+=2*primesieved){
	pos=(n-1)/2;
	crible[(pos/32)] &= ~(1<<(pos %32));
      }
    }
  }
  unsigned nextprime(vector<unsigned> & crible,unsigned p){
    // assumes crible has been filled
    ++p;
    if (p%2==0)
      ++p;
    unsigned pos=(p-1)/2,cs=crible.size()*32; 
    if (2*cs+1<=p)
      return nextprime(int(p)).val;
    for (;pos<cs;++pos){
      if (crible[pos/32] & (1<<(pos%32))){
	pos=2*pos+1;
	// if (pos!=nextprime(int(p)).val) CERR << "error " << p << endl;
	return pos;
      }
    }
    return nextprime(int(p)).val; // not found
  }
#endif

  static const int giac_last_prime=giac_primes[sizeof(giac_primes)/sizeof(short)-1];
#if defined RTOS_THREADX || defined BESTA_OS || defined NSPIRE
  const unsigned QS_SIZE=65536; // number of slicetype in a sieve slice
  typedef unsigned char slicetype; // define to unsigned char if not enough
#else
  const unsigned QS_SIZE=65536; // number of slicetype in a sieve slice
  typedef unsigned char slicetype; // define to unsigned char if not enough
#endif

#ifdef NSPIRE
  template<class T>
  static void printbool(nio::ios_base<T> & os,const vector<unsigned> & v,int C=1){
    if (C)
      C=giacmin(C,int(v.size()));
    else
      C=v.size();
    for (int c=0;c<C;++c){
      for (int s=0;s<32;++s){
	os << (((v[c] >> s & 1)==1)?1:0) << " ";
      }
    }
    os << endl;
  }

  template<class T>
  void printbool(nio::ios_base<T> & os,const vector< vector<unsigned> > & m,int L=32){
    if (L)
      L=giacmin(L,int(m.size()));
    else
      L=m.size();
    for (int l=0;l<L;++l){
      printbool(os,m[l]);
    }
  }
#else
  static void printbool(ostream & os,const vector<unsigned> & v,int C=1){
    if (C)
      C=giacmin(C,int(v.size()));
    else
      C=int(v.size());
    for (int c=0;c<C;++c){
      for (int s=0;s<32;++s){
	os << (((v[c] >> s & 1)==1)?1:0) << " ";
      }
    }
    os << endl;
  }

  void printbool(ostream & os,const vector< vector<unsigned> > & m,int L=32){
    if (L)
      L=giacmin(L,int(m.size()));
    else
      L=int(m.size());
    for (int l=0;l<L;++l){
      printbool(os,m[l]);
    }
  }
#endif

  template <class T>
  inline void swap(T * & ptr1, T * & ptr2){
    T * tmp=ptr1;
    ptr1=ptr2;
    ptr2=tmp;
  }

#ifdef x86_64
#define GIAC_RREF_UNROLL 4
#else
#define GIAC_RREF_UNROLL 4
#endif

  // #define RREF_SORT
#ifdef RREF_SORT
  struct line_t {
    unsigned * tab;
    unsigned count;
  };

  bool operator < (const line_t & l1,const line_t & l2){
    if (!l1.count)
      return false;
    if (!l2.count)
      return true;
    return l1.count<l2.count;
  }

  unsigned count_ones(unsigned * tab,int C32){
    register unsigned r=0;
    register unsigned * tabend=tab+C32;
    for (;tab!=tabend;++tab){
      register unsigned u=*tab;
      while (u){
	r += u & 1;
	u >>= 1;
      }
    }
    return r;
  }

#else
  struct line_t {
    unsigned * tab;
  };
#endif
  

  // mode=0: full reduction, 1 subreduction, 2 finish full reduction from subreduction
  void rref(vector< line_t > & m,int L,int C32,int mode){
    int i,l=0,c=0,C=C32*32;
    for (;l<L && c<C;){
      // printbool(CERR,m);
      int c1=c/32,c2=c%32;
      // find first non-0 pivot in col c starting at row l
      for (i=l;i<L;++i){
	if ((m[i].tab[c1] >> c2) & 1)
	  break;
      }
      if (i==L){ // none found in this column
	++c;
	continue;
      }
      if (i!=l) 
	swap(m[i].tab,m[l].tab); // don't care about count...
      int start=mode==1?l+1:0, end=mode==2?l:L;
#ifdef x86_64
      ulonglong * pivend, * pivbeg;
      pivbeg = (ulonglong *) (m[l].tab+(c1/GIAC_RREF_UNROLL)*GIAC_RREF_UNROLL);
      pivend = (ulonglong *) (m[l].tab+C32);
#else
      unsigned * pivbeg = m[l].tab+(c1/GIAC_RREF_UNROLL)*GIAC_RREF_UNROLL, * pivend = m[l].tab+C32;
#endif
      for (i=start;i<end;++i){
	if (i==l || ( (m[i].tab[c1] >> c2) & 1)!=1) 
	  continue;
	// line combination l and i
#ifdef x86_64
	ulonglong * curptr=(ulonglong *) (m[i].tab+(c1/GIAC_RREF_UNROLL)*GIAC_RREF_UNROLL);
	for (ulonglong * pivptr=pivbeg;pivptr!=pivend;curptr += GIAC_RREF_UNROLL/2,pivptr += GIAC_RREF_UNROLL/2){
	  // small optimization (loop unroll), assumes mult of 4(*32) columns
	  // PREFETCH(curptr+8);
	  *curptr ^= *pivptr;
	  curptr[1] ^= pivptr[1];
#if GIAC_RREF_UNROLL==8
	  curptr[2] ^= pivptr[2];
	  curptr[3] ^= pivptr[3];
#endif
	}
#else
	unsigned * curptr=m[i].tab+(c1/GIAC_RREF_UNROLL)*GIAC_RREF_UNROLL;
	for (unsigned * pivptr=pivbeg;pivptr!=pivend;curptr += GIAC_RREF_UNROLL,pivptr += GIAC_RREF_UNROLL){
	  // small optimization (loop unroll), assumes mult of 4(*32) columns
	  // PREFETCH(curptr+16);
	  *curptr ^= *pivptr;
	  curptr[1] ^= pivptr[1];
	  curptr[2] ^= pivptr[2];
	  curptr[3] ^= pivptr[3];
#if GIAC_RREF_UNROLL==8
	  curptr[4] ^= pivptr[4];
	  curptr[5] ^= pivptr[5];
	  curptr[6] ^= pivptr[6];
	  curptr[7] ^= pivptr[7];
#endif
	}
#endif
      }
      ++l;
      ++c;
    }
  }

  template <class T>
  void release_memory(vector<T> & slice){
    // release memory from slice
    vector<T> tmp;
    swap(slice,tmp);
  }

#ifdef USE_GMP_REPLACEMENTS
  int modulo(const mpz_t & a,unsigned b){
    if (mpz_cmp_ui(a,0)<0){
      mpz_neg(*(mpz_t *)&a,a);
      int res=modulo(a,b);
      mpz_neg(*(mpz_t *)&a,a);
      return b-res;
    }
    mp_digit C; 
    mp_mod_d((mp_int *)&a,b,&C);
    return C;
  }
#else
  int modulo(const mpz_t & a,unsigned b){
    return mpz_fdiv_ui(a,b);
  }
#endif

#if defined RTOS_THREADX || defined BESTA_OS || defined NSPIRE
  typedef unsigned short pui_t ;
  typedef unsigned short ushort_t;
  typedef short short_t;
#else
  typedef unsigned pui_t ;
  // #ifndef USE_GMP_REPLACEMENTS // uncomment for Aspen debugging
#define PRIMES32
  // #endif
#ifdef PRIMES32
  typedef unsigned ushort_t;
  typedef int short_t;
#else
  typedef unsigned short ushort_t;
  typedef unsigned short int short_t;
#endif

#ifdef EMCC
#include <map>
#endif
#if (defined EMCC || defined(HASH_MAP_NAMESPACE)) && defined(PRIMES32)
#define ADDITIONAL_PRIMES_HASHMAP
#endif
#endif // RTOS_THREADX || BESTA_OS

  struct axbinv {
#if 0
    unsigned short aindex;
    unsigned short bindex;
#else
    unsigned aindex;
    unsigned bindex;
#endif
    int shiftpos;
    pui_t first,second; // indexes in the "puissancestab" table
    axbinv(ushort_t a_,int shiftpos_,ushort_t b_,pui_t f_,pui_t s_):aindex(a_),bindex(b_),shiftpos(shiftpos_),first(f_),second(s_) {};
    axbinv() {};
  };

#ifdef ADDITIONAL_PRIMES_HASHMAP
  unsigned largep(const axbinv & A,ushort_t * puissancestab) { 
    // return A.largeprime;
    if (A.second-A.first<3) return 0;
#ifdef PRIMES32
    if (*(puissancestab+A.second-2)!=1)
      return 0;
    return *(puissancestab+A.second-1);
#else
    if (*(puissancestab+A.second-3)!=1)
      return 0;
    return (unsigned(*(puissancestab+A.second-2)) << 16)  + *(puissancestab+A.second-1);
#endif      
  }
#endif

#ifdef ADDITIONAL_PRIMES_HASHMAP
#ifdef EMCC // container does not seem to be important for <= 70 digits
  typedef map<unsigned,axbinv> additional_map_t;
#else
  typedef HASH_MAP_NAMESPACE::hash_map<unsigned,axbinv,hash_function_unsigned_object > additional_map_t ;
#endif
#endif

#if !defined(RTOS_THREADX) && !defined(BESTA_OS) && !defined NSPIRE
  // #define WITH_INVA
#if defined(__APPLE__) || defined(x86_64)
#define LP_TAB_SIZE 15 // slice size will be 2^LP_TAB_SIZE
  //  #define LP_SMALL_PRIMES
#define LP_TAB_TOGETHER
#define USE_MORE_PRIMES
#else
#define LP_TAB_SIZE 15 // slice size will be 2^LP_TAB_SIZE
#endif // APPLE or 64 bits
#endif // !defined RTOS_THREADX and BESTA_OS

#ifdef LP_TAB_SIZE
#define LP_MASK ((1<<LP_TAB_SIZE)-1)
  struct lp_entry_t {
    ushort_t pos;
    ushort_t p;
    lp_entry_t():pos(0),p(0) {};
    lp_entry_t(ushort_t pos_,ushort_t p_):pos(pos_),p(p_) {};
  };
  typedef vector<lp_entry_t> lp_tab_t;
#endif

#ifdef LP_TAB_SIZE
#define LP_BIT_LIMIT 15
#else
#define LP_BIT_LIMIT 15
#endif

#if GIAC_ADDITIONAL_PRIMES==16
  typedef unsigned short additional_t;
#else
  typedef int additional_t;
#endif

  inline int _equalposcomp(const std::vector<additional_t> & v, additional_t w){
    int n=1;
    for (std::vector<additional_t>::const_iterator it=v.begin(),itend=v.end();it!=itend;++it){
      if ((*it)==w)
	return n;
      else
	n++;
    }
    return 0;
  }

  // #define SQRTMOD_OUTSIDE
#define WITH_LOGP // if defined primes should not exceed 2^24 (perhaps 2^25, choice of sqrt)

  struct small_basis_t {
    unsigned short root1;
    unsigned short root2;
    unsigned short p;
    unsigned short logp;
  };

#ifdef SQRTMOD_OUTSIDE
  struct basis_t {
    unsigned root1; // first root position in slice
    unsigned root2; // second root position
    ushort_t p:24; // the prime p
#ifdef WITH_LOGP
    unsigned char logp:8; // could be unsigned char
#endif
    basis_t():root1(0),root2(0),p(2) {
#ifdef WITH_LOGP
      logp=sizeinbase2(p);
#endif
    }
    basis_t(ushort_t _p):root1(0),root2(0),p(_p) {
#ifdef WITH_LOGP
      logp=sizeinbase2(p);
#endif
    }
  } ;

#else // SQRTMOD_OUTSIDE
  struct basis_t {
    unsigned root1; // first root position in slice
    unsigned root2; // second root position
    ushort_t p; // the prime p
    unsigned sqrtmod:24;
#ifdef WITH_LOGP
    unsigned char logp:8; // could be unsigned char
#endif
    basis_t():root1(0),root2(0),p(2),sqrtmod(0) {
#ifdef WITH_LOGP
      logp=sizeinbase2(p);
#endif
    }
    basis_t(ushort_t _p):root1(0),root2(0),p(_p),sqrtmod(0) {
#ifdef WITH_LOGP
      logp=sizeinbase2(p);
#endif
    }
    basis_t(ushort_t _p,ushort_t _sqrtmod):root1(0),root2(0),p(_p),sqrtmod(_sqrtmod) {
#ifdef WITH_LOGP
      logp=sizeinbase2(p);
#endif
}
  } ;
#endif // SQRTMOD_OUTSIDE

#ifdef LP_SMALL_PRIMES 
  static inline void core_sieve(slicetype * slice,small_basis_t * bit,small_basis_t * bitend)  {
    for (;bit!=bitend;++bit){
      // first root is at bit->root1
      register unsigned p=bit->p;
      register unsigned char nbits=bit->logp;
      register unsigned pos=bit->root1,pos2=bit->root2;
      if (pos==pos2){
	for (;pos<32768; pos += p){
	  slice[pos] -= nbits;
	}
	bit->root2=bit->root1 = pos-32768; // save for next slice
      }
      else {
	for (;pos<32768; pos += p){
	  slice[pos] -= nbits;
	}
	bit->root1 = pos-32768; // save for next slice
	// second root, polynomial has 2 distinct roots
	for (;pos2<32768;pos2 += p){
	  slice[pos2] -= nbits;
	}
	bit->root2 = pos2-32768;
      }
    }
  }

#else // LP_SMALL_PRIMES

#ifdef LP_TAB_SIZE
#define SLICEEND (1<<LP_TAB_SIZE)
#else
#define SLICEEND ss
#endif

  // return position of last prime sieved (useful when large prime hashtable is enabled
  static inline basis_t * core_sieve(slicetype * slice,int ss,basis_t * bit,basis_t * bitend)  {
    register unsigned char nbits=sizeinbase2(bit->p);
    // int next=1 << nbits;
    for (;bit!=bitend;++bit){
      // first root is at bit->root1
      register ushort_t p=bit->p;
#ifdef WITH_LOGP
      nbits=bit->logp;
#else
      if (p>next){
	++nbits;
#if !defined(BESTA_OS) && !defined(RTOS_THREADX) && !defined NSPIRE
	if (nbits==LP_BIT_LIMIT+1)
	  break;
#endif
	next *=2;
      }
#endif
      register unsigned pos=bit->root1,pos2=bit->root2;
      if (pos==pos2){
	for (;int(pos)<SLICEEND; pos += p){
	  slice[pos] -= nbits;
	}
	bit->root2=bit->root1 = pos-SLICEEND; // save for next slice
      }
      else {
	for (;int(pos)<SLICEEND; pos += p){
	  slice[pos] -= nbits;
	}
	bit->root1 = pos-SLICEEND; // save for next slice
	// second root, polynomial has 2 distinct roots
	for (;int(pos2)<SLICEEND;pos2 += p){
	  slice[pos2] -= nbits;
	}
	bit->root2 = pos2-SLICEEND;
      }
    }
#if !defined(RTOS_THREADX) && !defined(BESTA_OS) && !defined NSPIRE
#ifndef LP_TAB_SIZE
    for (;bit!=bitend;++bit){
      // same as above but we are sieving with primes >2^15, no need to check for nbits increase
      register ushort_t p=bit->p;
      register unsigned pos=bit->root1;
      for (;pos<ss; pos += p){
	slice[pos] -= LP_BIT_LIMIT+1;
      }
      bit->root1 = pos-ss; // save for next slice
      // if (sameroot) continue;
      pos=bit->root2;
      for (;pos<ss;pos += p){
	slice[pos] -= LP_BIT_LIMIT+1;
      }
      bit->root2 = pos-ss;
    }
#endif
#endif
    return bit;
  }
#endif // LP_SMALL_PRIMES

  // sieve in [sqrtN+shift,sqrtN+shift+slice.size()-1]
  // return -1 if memory problem, or the number of relations
  int msieve(const gen & a,const vecteur & sqrtavals,
	     const vecteur &bvals,const mpz_t& c,
	     vector<basis_t> & basis,unsigned lp_basis_pos,
#ifdef LP_SMALL_PRIMES
	     vector<small_basis_t> & small_basis,
#endif
	     unsigned maxadditional,
#ifdef ADDITIONAL_PRIMES_HASHMAP
	     additional_map_t & additional_primes_map,
#else
	     vector<additional_t> & additional_primes,vector<bool> & additional_primes_twice,
#endif
	     const gen & N,const gen & isqrtN,
	     slicetype * slice,int ss,int shift,
	     ushort_t * puissancesbegin,ushort_t* & puissancesptr,ushort_t * puissancesend,    
	     vector<ushort_t> & curpuissances,vector<ushort_t> &recheck,
	     vector<axbinv> & axbmodn,
	     mpz_t & z1,mpz_t & z2,mpz_t & z3,mpz_t & alloc1,mpz_t & alloc2,mpz_t & alloc3,mpz_t & alloc4,mpz_t & alloc5,
#ifdef LP_TAB_SIZE
	     const lp_tab_t & lp_tab,
#endif
	     GIAC_CONTEXT){
    int nrelations=0;
    // first fill slice with expected number of bits of 
    // (isqrtN+shift)^2-N = 2*shift*isqrtN + negl.
    // -> log(2*isqrtN)+log(shift)
    int shiftss=absint(shift+ss),absshift=absint(shift);
    int nbits=mpz_sizeinbase(*isqrtN._ZINTptr,2)+sizeinbase2(absshift>shiftss?absshift:shiftss);
    // int nbits1=int(0.5+std::log(evalf_double(isqrtN,1,context0)._DOUBLE_val/2.*(absshift>shiftss?absshift:shiftss))/std::log(2.));
    // int curbits=0;
    int bs=int(basis.size());
    double up_to=1.5;
    if (nbits>70)
      up_to += (0.8*(nbits-70))/70;
    if (debug_infolevel>7)
      *logptr(contextptr) << CLOCK() << gettext("Sieve tolerance factor ") << up_to << endl;
    unsigned char logB=(unsigned char) (nbits-int(up_to*sizeinbase2(basis.back().p)+.5));
    // unsigned char logB=(unsigned char) (nbits-int(up_to*std::log(double(basis.back().p))/std::log(2.0)+.5));
    if (debug_infolevel>6)
      *logptr(contextptr) << CLOCK() << gettext(" reset") << endl;
    // assumes slice type is size 1 byte and multiple of 32
#ifdef x86_64
    ulonglong * ptr=(ulonglong *) &slice[0];
    ulonglong * ptrend=ptr+ss/8;
    ulonglong pattern=(logB <<24)|(logB<<16)|(logB<<8) | logB;
    pattern = (pattern << 32) | pattern;
    for (;ptr!=ptrend;++ptr){
      *ptr=pattern;
    }
#else
    unsigned * ptr=(unsigned *) &slice[0];
    unsigned * ptrend=ptr+ss/4;
    unsigned pattern=(logB <<24)|(logB<<16)|(logB<<8) | logB;
    for (;ptr!=ptrend;++ptr){
      *ptr=pattern;
    }
#endif
    if (debug_infolevel>8)
      *logptr(contextptr) << CLOCK() << gettext(" end reset, nbits ") << nbits << endl;
    // now for all primes p in basis move in slice from p to p
    // decrease slice[] by number of bits in p
    // determines the first prime used in basis
#if 0 // def WITH_LOGP
    nbits=2*mpz_sizeinbase(*isqrtN._ZINTptr,2);
    int next=50; 
    // note that msieve leaves 20 to 22 primes for normal range, and 15 for large 
    nbits = sizeinbase2(next);
#else
    if (nbits>120)
      nbits = 7;
    else { 
      if (nbits>90)
	nbits = 6;
      else {
	if (nbits>78)
	  nbits=5;
	else
	  nbits = 4;
      }
    }
    int next = 1 << (nbits-1);
#endif
    unsigned bstart;
    for (bstart=0;bstart<basis.size();++bstart){
      int p=basis[bstart].p;
      if (p>next){
	if (debug_infolevel>7)
	  *logptr(contextptr) << gettext("Sieve first prime ") << p << " nbits " << nbits << endl;
	break;
      }
#ifdef LP_SMALL_PRIMES 
      int pos=small_basis[bstart].root1;
      pos=(pos-ss)%p;
      if (pos<0)
	pos+=p;
      small_basis[bstart].root1=pos;
      pos=small_basis[bstart].root2;
      pos=(pos-ss)%p;
      if (pos<0)
	pos+=p;
      small_basis[bstart].root2=pos;
#else
      // update pos_root_mod for later check
      int pos=basis[bstart].root1;
      pos=(pos-ss)%p;
      if (pos<0)
	pos+=p;
      basis[bstart].root1=pos;
      pos=basis[bstart].root2;
      pos=(pos-ss)%p;
      if (pos<0)
	pos+=p;
      basis[bstart].root2=pos;
#endif
    }
    next *= 2;
    if (debug_infolevel>8)
      *logptr(contextptr) << CLOCK() << gettext(" sieve begin ") << endl;
    // bool sameroot; // Should be there to avoid counting twice the same root but it's faster to ignore it..;
#ifdef LP_SMALL_PRIMES
    small_basis_t * bit=&small_basis[bstart], * bitend=&small_basis[0]+small_basis.size();
    core_sieve(slice,bit,bitend);
#else
    basis_t * bit=&basis[bstart], * bitend=&basis[0]+bs;
#ifdef LP_TAB_SIZE
    bitend=core_sieve(slice,ss,bit,&basis[0]+lp_basis_pos);
#else
    bitend=core_sieve(slice,ss,bit,bitend);
#endif
#endif
    slicetype * st=slice, * stend=slice+ss;
#ifdef LP_TAB_SIZE
    // sieve for large prime using saved position
    if (!lp_tab.empty()){
      const lp_entry_t * lpit=&lp_tab[0],*lpitend=lpit+lp_tab.size(),*lpitend1=lpitend-8;
      if (lpitend-lpit>8){
	for (;lpit<lpitend1;lpit+=8){
	  PREFETCH(lpit + 16);
	  slice[lpit->pos] -= 16;
	  slice[lpit[1].pos] -= 16;
	  slice[lpit[2].pos] -= 16;
	  slice[lpit[3].pos] -= 16;
	  slice[lpit[4].pos] -= 16;
	  slice[lpit[5].pos] -= 16;
	  slice[lpit[6].pos] -= 16;
	  slice[lpit[7].pos] -= 16;
	}
      }
      for (;lpit<lpitend;++lpit)
	slice[lpit->pos] -= 16;
    }
#endif
    unsigned cl=0;
    if (debug_infolevel>6)
      cl=CLOCK();
    if (debug_infolevel>8)
      *logptr(contextptr) << cl << gettext("relations ") << endl;
    // now find relations
    st=slice; stend=slice+ss;
#ifdef x86_64
    ulonglong * st8=(ulonglong *) &slice[0],*st8end=st8+ss/8;
#else
    unsigned * st4=(unsigned *) &slice[0],*st4end=st4+ss/4;
#endif
    for (
#ifdef x86_64
	 ;st8!=st8end;st8+=4
#else
	 ;st4<st4end;st4+=8
#endif
	 ){
      // compare slice[pos] to boundary
#ifdef x86_64
      if ( !( (*st8  | st8[1] | st8[2] | st8[3] ) & 0x8080808080808080) )
	continue;
      int pos=int(((slicetype*)st8)-slice);
#else
      if ( !( (*st4  | st4[1] | st4[2] | st4[3] | st4[4] | st4[5] | st4[6] | st4[7]) & 0x80808080) )
	continue;
      int pos=((slicetype*)st4)-slice;
#endif
      st = slice+pos;
      for (int stpos=0;stpos<32;++st,++pos,++stpos){
	if (!(*st&0x80))
	  continue;
	// factor (isqrtN+shift+pos)^2-N on basis
	curpuissances.clear(); recheck.clear();
	int shiftpos=shift+pos;
#if 0
	gen tmp=shiftpos;
	tmp=(a*tmp+2*bvals.back())*tmp+c;
	tmp.uncoerce(); mpz_set(z1,*tmp._ZINTptr);
	*logptr(contextptr) << tmp << endl;
#else 
	mpz_set_si(z1,shiftpos);
	mpz_mul(z2,z1,*a._ZINTptr);
	mpz_mul_2exp(z3,*bvals.back()._ZINTptr,1);
	mpz_add(z2,z2,z3);
	mpz_mul(z3,z1,z2);
	mpz_add(z1,z3,c);
#endif
	if (mpz_cmp_si(z1,0)<0){ // if (is_positive(-tmp,context0))
	  curpuissances.push_back(0xffff);
	  mpz_neg(z1,z1); // tmp=-tmp;
	}
	bool done=false;
#ifdef LP_TAB_SIZE
#ifdef LP_SMALL_PRIMES
	small_basis_t * basisptr=&small_basis[0], * basisend=basisptr+(bitend-bit);
#else
	basis_t * basisptr=&basis[0], * basisend=basisptr+(bitend-bit);
#endif
#else // LP_TAB_SIZE
	basis_t * basisptr=&basis[0], * basisend=basisptr+bs;
#endif
	// we have modified pos_root_mod1 and pos_root_mod2 -> posss
	int posss=ss-pos; // always positive
	for (;basisptr!=basisend;++basisptr){
	  register int bi=basisptr->p;
	  // check if we have a root 
	  register int check=bi-(posss%bi); 
	  if (check!=bi && check!=int(basisptr->root1) && check!=int(basisptr->root2))
	    continue;
	  if (check==bi && basisptr->root1 && basisptr->root2)
	    continue;
	  recheck.push_back(bi);
	} // end for on (small) primes
#ifdef LP_TAB_SIZE
	// add primes from large prime hashtable
	lp_tab_t::const_iterator lpit=lp_tab.begin(),lpend=lp_tab.end();
	int hash_pos=recheck.size();
	for (;lpit!=lpend;++lpit){
	  if (pos==int(lpit->pos)){
	    recheck.push_back(lpit->p);
	  }
	}
	if (int(recheck.size())>hash_pos+1)
	  sort(recheck.begin(),recheck.end());
#endif
	// now divide first by product of elements of recheck
	double prod=1,nextprod=1;
	for (unsigned k=0;k<recheck.size();++k){
	  nextprod=prod*recheck[k];
	  if (nextprod< 2147483648. )
	    prod=nextprod;
	  else {
	    // mpz_fdiv_q_ui(z1,z1,prod);
	    mpz_set_si(z2,int(prod));
#ifdef USE_GMP_REPLACEMENTS
	    mp_grow(&alloc1,z1.used+2);
	    mpz_set_ui(alloc1,0);
	    alloc1.used = z1.used +2 ;
	    mpz_set(alloc2,z1);
	    mpz_set(alloc3,z2);
	    alloc_mp_div(&z1,&z2,&z1,&z3,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
	    mpz_divexact(z3,z1,z2);
	    mpz_swap(z1,z3);
#endif
	    prod=recheck[k];
	  }
	}
	if (prod!=1){
	  // mpz_fdiv_q_ui(z1,z1,prod);
	  mpz_set_si(z2,int(prod));
#ifdef USE_GMP_REPLACEMENTS
	  mp_grow(&alloc1,z1.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = z1.used +2 ;
	  mpz_set(alloc2,z1);
	  mpz_set(alloc3,z2);
	  alloc_mp_div(&z1,&z2,&z1,&z3,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
	  mpz_divexact(z3,z1,z2);
	  mpz_swap(z1,z3);
#endif
	}
	// then set curpuissances
	bool small_=false;
	int Z1=0;
	for (unsigned k=0;k<recheck.size();++k){
	  int j=0;
	  int bi=recheck[k];
#ifdef USE_GMP_REPLACEMENTS
	  div_t qr;
	  if (!small_){
	    small_=mpz_sizeinbase(z1,2)<32;
	    if (small_)
	      Z1=mpz_get_si(z1);
	  }
	  if (small_){
	    for (++j;;++j){
	      qr=div(Z1,bi);
	      if (qr.rem)
		break;
	      Z1=qr.quot;
	    }
	  }
	  else {
	    for (++j;;++j){
#if 1
	      mpz_set_ui(z2,bi);
	      mp_grow(&alloc1,z1.used+2);
	      mpz_set_ui(alloc1,0);
	      alloc1.used = z1.used +2 ;
	      mpz_set(alloc2,z1);
	      mpz_set(alloc3,z2);
	      alloc_mp_div(&z1,&z2,&z2,&z3,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
	      mpz_fdiv_qr_ui(z2,z3,z1,bi);
#endif
	      if (mpz_cmp_si(z3,0))
		break;
	      mpz_set(z1,z2);
	    }
	  }
#else
	  for (++j;;++j){
	    mpz_fdiv_qr_ui(z2,z3,z1,bi);
	    if (mpz_cmp_si(z3,0))
	      break;
	    mpz_set(z1,z2);
	  }
#endif
	  /*
	    while (is_zero(smod(tmp,bi))){
	    tmp=tmp/bi;
	    ++j;
	    }
	  */
	  if (!done && bi>255){
	    curpuissances.push_back(0);
	    done=true;
	  }
	  if (done){
	    for (;j;--j)
	      curpuissances.push_back(bi);
	  }
	  else {
	    for (;j>=256;j-=256)
	      curpuissances.push_back(bi<<8);
	    if (j)
	      curpuissances.push_back( (bi << 8) | j);
	  }
	}
	if (small_) 
	  mpz_set_si(z1,Z1);
	if (mpz_cmp_si(z1,1)==0){ // is_one(tmp)){
	  ++nrelations;
	  if (debug_infolevel>6)
	    *logptr(contextptr) << CLOCK() << gettext(" true relation ") << endl;
	  axbmodn.push_back(axbinv(int(sqrtavals.size())-1,shiftpos,int(bvals.size())-1,int(puissancesptr-puissancesbegin),int(puissancesptr-puissancesbegin)+int(curpuissances.size())));	
	  for (unsigned i=0;i<curpuissances.size();++puissancesptr,++i){
	    if (puissancesptr>=puissancesend)
	      return -1;
	    *puissancesptr=curpuissances[i];
	  }
	}
	else {
	  unsigned param2;
#if (GIAC_ADDITIONAL_PRIMES==16)
	  param2=0xffff;
#else
	  param2=maxadditional;
#endif
	  if (mpz_cmp_ui(z1,param2)>0){
	    if (debug_infolevel>6)
	      *logptr(contextptr) << gen(z1) << gettext(" Sieve large remainder:") << endl;
	  }
	  else {
#ifdef GIAC_ADDITIONAL_PRIMES
	    additional_t P=mpz_get_ui(z1);
	    // if (int(P)>2*int(basis.back())) continue;
	    // if (debug_infolevel>5)
	    if (debug_infolevel>6)
	      *logptr(contextptr) << CLOCK() << " " << P << " remain " << endl;
#ifdef ADDITIONAL_PRIMES_HASHMAP
	    // add relation
	    ++nrelations;
	    curpuissances.push_back(1); // marker
#if (GIAC_ADDITIONAL_PRIMES==32) 
#ifndef PRIMES32
	    curpuissances.push_back(P >> 16);
#endif
#endif
	    curpuissances.push_back(P);
	    for (unsigned i=0;i<curpuissances.size();++puissancesptr,++i){
	      if (puissancesptr>=puissancesend)
		return -1;
	      *puissancesptr=curpuissances[i];
	    }
	    additional_map_t::iterator it=additional_primes_map.find(P),itend=additional_primes_map.end();
	    if (it!=itend) // build a large prime relation (P is the large prime)
	      axbmodn.push_back(axbinv(sqrtavals.size()-1,shiftpos,bvals.size()-1,(puissancesptr-puissancesbegin)-curpuissances.size(),(puissancesptr-puissancesbegin)));
	    else // record a partial relation
	      additional_primes_map[P]=axbinv(sqrtavals.size()-1,shiftpos,bvals.size()-1,(puissancesptr-puissancesbegin)-curpuissances.size(),(puissancesptr-puissancesbegin));
#else
	    int Ppos=_equalposcomp(additional_primes,P); // this is in O(additional^2)=o(B^3)
	    if (Ppos){
	      if (debug_infolevel>6)
		*logptr(contextptr) << P << gettext(" already additional") << endl;
	      --Ppos;
	      additional_primes_twice[Ppos]=true;
	    } else {
	      // add a prime in additional_primes if <=QS_B_BOUND
	      if (int(additional_primes.size())>=4*bs 
#if defined(RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
		  || bs+additional_primes.size()>700
#endif
		  )
		continue;
	      additional_primes.push_back(P);
	      additional_primes_twice.push_back(false);
	      Ppos=int(additional_primes.size())-1;
	    }
	    // add relation
	    curpuissances.push_back(1); // marker
#if GIAC_ADDITIONAL_PRIMES==32 
#ifndef PRIMES32
	    curpuissances.push_back(P >> 16);
#endif
#endif
	    curpuissances.push_back(P);
	    axbmodn.push_back(axbinv(int(sqrtavals.size())-1,shiftpos,int(bvals.size())-1,int(puissancesptr-puissancesbegin),int(puissancesptr-puissancesbegin)+int(curpuissances.size())));
	    for (unsigned i=0;i<curpuissances.size();++puissancesptr,++i){
	      if (puissancesptr>=puissancesend)
		return -1;
	      *puissancesptr=curpuissances[i];
	    }
#endif // ADDITIONAL_PRIMES_HASHMAP
#endif // GIAC_ADDITIONAL_PRIMES
	  }
	}
      }
    } // end for loop on slice array
    if (debug_infolevel>6){
      unsigned cl2=CLOCK();
      *logptr(contextptr) << cl2 << gettext(" end relations ") << cl2-cl << endl;
    }
    return nrelations;
  }

  // #define MP_MODINV_1
#ifdef MP_MODINV_1
  static inline unsigned mp_modinv_1(unsigned a, unsigned p) {
  
    unsigned ps1, ps2, dividend, divisor, rem, q, t;
    unsigned parity;
    
    q = 1; rem = a; dividend = p; divisor = a;
    ps1 = 1; ps2 = 0; parity = 0;
    
    while (divisor > 1) {
      rem = dividend - divisor;
      t = rem - divisor;
      if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
	if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
	  if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
	    if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
	      if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
		if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
		  if (rem >= divisor) { q += ps1; rem = t; t -= divisor;
		    if (rem >= divisor) { q += ps1; rem = t;
		      if (rem >= divisor) {
			q = dividend / divisor;
			rem = dividend % divisor;
			q *= ps1;
		      } 
		    } 
		  } 
		} 
	      } 
	    } 
	  } 
	} 
      }
      
      q += ps2;
      parity = ~parity;
      dividend = divisor;
      divisor = rem;
      ps2 = ps1;
      ps1 = q;
    }
  
    if (parity == 0)
      return ps1;
    else
      return p - ps1;
  }
#endif

#if (defined __i386__ || defined __x86_64__) && !defined PIC && !defined _I386_ && !defined __APPLE__ && !defined VISUALC && !defined(FIR_LINUX) && !defined(FIR_ANDROID)
  #define _I386_
#endif

#ifdef _I386_
  // a->a+b*c mod m
  inline void addmultmod(int & a,int b,int c,int m){
    asm volatile("testl %%ebx,%%ebx\n\t" /* sign bit=1 if negative */
		 "jns .Lok%=\n\t"
		 "addl %%edi,%%ebx\n" /* a+=m*/
		 ".Lok%=:\t"
		 "imull %%ecx; \n\t" /* b*c in edx:eax */
		 "addl %%ebx,%%eax; \n\t" /* b*c+a */
		 "adcl $0x0,%%edx; \n\t" /* b*c+a carry */
		 "idivl %%edi; \n\t"
		 :"=d"(a)
		 :"a"(b),"b"(a),"c"(c),"D"(m)
		 );
  }
#endif

  inline 
  int modmult(int a,int b,unsigned p){
#ifdef _I386_
    register int res;
    asm volatile("imull %%edx\n\t" /* a*b-> edx:eax */ 
		 "idivl %%ecx\n\t" /* edx:eax div p -> quotient=eax, remainder=edx */
		 :"=d"(res)
		 :"a"(a),"d"(b),"c"(p)
		 :
		 );
    return res;
#else
    return a*longlong(b) % p;
#endif
  }

  // assumes b>0 and |a|<b
  int invmodnoerr(int a,int b){
    if (a==1 || a==-1 || a==0)
      return a;
    if (a<0) // insure a>0 so that all remainders below are >=0
      a+=b;
#ifdef _I386_ // works only for ushort_t == unsigned short
    // int res=mp_modinv_1(a,b),p=b;
    /* GDB: si will step in assembly, info registers show register content, x/i $pc show next ins */
    asm volatile("movl $0,%%edi\n\t" 
		 "movl $1,%%ecx\n\t"
		 "movl $0,%%edx\n\t" 
		 ".Lloop%=:\t"
		 "movl %%esi,%%eax\n\t" 
		 "andl $0x80000000,%%esi\n\t"
		 "xorl $0x80000000,%%esi\n\t" /* parity indicator for sign */
		 "andl $0x7fffffff,%%eax\n\t" /* clear high bit of ax */
		 "divl %%ebx\n\t" /* divide si by bx, ax=quotient, dx=rem */
		 "orl %%ebx,%%esi\n\t"  /* copy bx in si but keep high bit of si */
		 "movl %%edx,%%ebx\n\t" /* si now contains bx and bx the remainder */
		 "mull %%ecx\n\t" /* quotient*cx is in ax (dx=0) */
		 "addl %%eax,%%edi\n\t" /* di <- di+q*cx*/
		 "xchgl %%edi,%%ecx\n\t" /* cx <- origi di+q*cx, di <- orig cx */
		 "testl %%ebx,%%ebx\n\t"
		 "jne .Lloop%=\n\t" 
		 :"=D"(a),"=S"(b)
		 :"S"(b),"b"(a)
		 :"%eax","%ecx","%edx"
		 );
    if (b<0)
      b=b&0x7fffffff;
    else
      a=-a;
    a=(b==1)?a:0;
    // if ((a-res)%p)
    //  CERR << "error" << endl;
    return a;
#else // i386

#ifdef MP_MODINV_1
    return mp_modinv_1(a,b);
#endif
    // r0=b=ab*a+1*b
    // r1=a=aa*a+0*b
    int aa(1),ab(0),ar(0);
#if 0
    ushort_t q,r;
    while (a){
      q=b/a;
      ar=ab-q*aa;
      r=b-q*a;
      if (!r)
	return a==1?aa:0;
      q=a/r;
      ab=aa-q*ar;
      b=a-q*r;
      if (!b)
	return r==1?ar:0;
      q=r/b;
      aa=ar-q*ab;
      a=r-q*b;
    }
    return b==1?ab:0;
#else
    div_t qr;
    while (a){
      qr=div(b,a);
      ar=ab-qr.quot*aa;
      b=a;
      a=qr.rem;
      ab=aa;
      aa=ar;
    }
    if (b==1)
      return ab;
    return 0;
#endif
#endif // i386
  }

#if 0 // def PRIMES32
  // assumes |a|<b
  longlong invmodnoerr(longlong a,longlong b){
    if (a==1 || a==-1 || a==0)
      return a;
    if (a<0) // insure a>0 so that all remainders below are >=0
      a+=b;
    // r0=b=ab*a+1*b
    // r1=a=aa*a+0*b
    longlong aa(1),ab(0),ar(0);
    longlong q,r;
    lldiv_t qr;
    while (a){
      qr=lldiv(b,a);
      ar=ab-qr.quot*aa;
      b=a;
      a=qr.rem;
      ab=aa;
      aa=ar;
    }
    if (b==1)
      return ab;
    return 0;
  }
#endif

  static int find_multiplier(const gen & n,double & delta,GIAC_CONTEXT){
    delta=0;
    if (n.type!=_ZINT)
      return 1;
    static const unsigned char mult[] =
      { 1, 3, 5, 7, 11, 13, 15, 17, 19, 
	21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47}; // only odd values for multiplier
    unsigned nmult=sizeof(mult)/sizeof(unsigned char);
    double scores[50];
    int nmodp=modulo(*n._ZINTptr,8),knmodp;
    // init scores and set value for 2
    double ln2=std::log(2.0);
    for (unsigned i=0;i<nmult;++i){
      knmodp=(mult[i]*nmodp)%8;
      scores[i]=0.5*std::log(double(mult[i]));
      switch(knmodp){
      case 1:
	scores[i] -= 2*ln2;
	break;
      case 5:
	scores[i] -= ln2;
	break;
      case 3: case 7:
	scores[i] -= 0.5 * ln2;
	break;
      }
    }
    // now compute contribution for giac_primes[1..300]
    for (unsigned i=1;i<=300;++i){
      int p=giac_primes[i];
      double contrib=std::log(double(p))/(p-1);
      nmodp=modulo(*n._ZINTptr,p);
      for (unsigned j=0;j<nmult;++j){
	knmodp=(nmodp*mult[j])%p;
	if (knmodp==0)
	  scores[j] -= contrib;
	else {
	  if (!is_undef(sqrt_mod(knmodp,p,true,context0)))
	    scores[j] -= 2*contrib;
	}
      }
    }
    // select the smallest scores
    int pos=0; 
    double minscore=scores[0]-0.1;
    for (unsigned i=1;i<nmult;++i){
      if (scores[i]<minscore){
	minscore=scores[i];
	pos=i;
      }
    }
    if (debug_infolevel>6){
      for (unsigned i=0;i<nmult;++i){
	*logptr(contextptr) << gettext("multiplier ") << int(mult[i]) << " score " << scores[i] << endl;
      }
    }
    if (pos){
      delta=minscore-scores[0];
      if (debug_infolevel)
	*logptr(contextptr) << gettext("Using multiplier ") << int(mult[pos]) << " delta-score " << delta << endl;
    }
    return mult[pos];
  }

  void add_relation(vector<line_t> relations,unsigned j,ushort_t * curpui,ushort_t * curpuiend,const vector<basis_t> & basis,const vector<additional_t> & additional_primes){
    unsigned curpuisize=unsigned(curpuiend-curpui);
    bool done=false;
    unsigned i=0; // position in basis
    unsigned k=0; // position in curpui
    additional_t p=0; // prime
    unsigned bs=unsigned(basis.size());
    for (;k<curpuisize;++k){
      p=curpui[k];
      if (p==0xffff){
	relations[0].tab[j/32] ^= (1 << (j%32));
	continue;
      }
      if (p==0){
	done=true;
	continue;
      }
      if (p==1){
#ifndef ADDITIONAL_PRIMES_HASHMAP
	p=curpui[k+1];
#if GIAC_ADDITIONAL_PRIMES==32
#ifndef PRIMES32
	p <<= 16;
	p += curpui[k+2];
#endif
#endif
	// k must be == curpui.size()-1
	// find p in additional_primes and position
	int Ppos=_equalposcomp(additional_primes,p);
	// *logptr(contextptr) << p << " " << Ppos+bs << " " << relations.size() << endl;
	relations[bs+Ppos].tab[j/32] |= (1 << (j %32));	  
#endif
	break;
      }
      if (!done){
	if (p%2==0) // even exponent?
	  continue;
	p >>= 8;
      }
      else {
	int c=1;
	for (;k+1<curpuisize;c++){
	  if (curpui[k+1]==unsigned(p))
	    ++k;
	  else
	    break;
	}
	if (c%2==0)
	  continue;
      }
      // advance to next i in basis
      for (;i<bs;++i){
	if (basis[i].p==unsigned(p))
	  break;
      }
      if (i<bs){
	++i;
	relations[i].tab[j/32] ^= (1 << (j %32));
      }
      else {
	// ERROR
      }
    } // end loop on k in curpui
  }

  void update_xy(axbinv & A,mpz_t & zx,mpz_t & zy,vector<short_t> & p,vector<short_t> & add_p,const gen & N,const vector<basis_t> & basis,const vector<additional_t> & additional_primes,const vecteur & sqrtavals,const vecteur & bvals,ushort_t * puissancestab,mpz_t & zq,mpz_t & zr,mpz_t & alloc1, mpz_t & alloc2,mpz_t & alloc3,mpz_t & alloc4, mpz_t & alloc5){
    // x=x*(a*shiftpos+b), y =y*sqrta;
    mpz_set_si(alloc2,A.shiftpos);
    if (sqrtavals[A.aindex].type==_INT_){
      mpz_mul_ui(alloc1,alloc2,sqrtavals[A.aindex].val);
      mpz_mul_ui(alloc2,alloc1,sqrtavals[A.aindex].val);
      mpz_mul_ui(zy,zy,sqrtavals[A.aindex].val);
    }
    else {
      mpz_mul(alloc1,alloc2,*sqrtavals[A.aindex]._ZINTptr);
      mpz_mul(alloc2,alloc1,*sqrtavals[A.aindex]._ZINTptr);
      mpz_mul(zy,zy,*sqrtavals[A.aindex]._ZINTptr);
    }
    mpz_add(alloc1,alloc2,*bvals[A.bindex]._ZINTptr);
    // mpz_mul(alloc2,alloc1,*invsqrtamodnvals[A.aindex]._ZINTptr);
    mpz_mul(zr,zx,alloc1);
#ifdef USE_GMP_REPLACEMENTS
    mp_grow(&alloc1,zr.used+2);
    mpz_set_ui(alloc1,0);
    alloc1.used = zr.used +2 ;
    mpz_set(alloc2,zr);
    mpz_set(alloc3,*N._ZINTptr);
    // mpz_set_si(alloc4,0);
    // mpz_set_si(alloc5,0);
    alloc_mp_div(&zr,N._ZINTptr,&zq,&zx,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
    mp_grow(&alloc1,zy.used+2);
    mpz_set_ui(alloc1,0);
    alloc1.used = zy.used +2 ;
    mpz_set(alloc2,zy);
    mpz_set(alloc3,*N._ZINTptr);
    // mpz_set_si(alloc4,0);
    // mpz_set_si(alloc5,0);
    alloc_mp_div(&zy,N._ZINTptr,&zq,&zy,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
    mpz_tdiv_r(zx,zr,*N._ZINTptr);
    mpz_tdiv_r(zy,zy,*N._ZINTptr);
#endif	 
    bool done=false;
    unsigned bi=0;
    ushort_t * it=puissancestab+A.first,* itend=puissancestab+A.second;
    for (;it!=itend;++it){
      if (*it==0xffff)
	continue;
      if (*it==1){
	++it;
	additional_t p=*it;
#if GIAC_ADDITIONAL_PRIMES==32 
#ifndef PRIMES32
	p <<= 16;
	++it;
	p += *it;
#endif
#endif
	int pos=_equalposcomp(additional_primes,p);
	if (pos) 
	  ++add_p[pos-1];
	else {
	  // otherwise ERROR!!!
	}
	break;
      }
      if (!*it){
	done=true;
	continue;
      }
      if (done){
	while (bi<basis.size() && basis[bi].p!=*it)
	  ++bi;
	if (bi<basis.size())
	  p[bi]++;
	else {
	  // ERROR
	}
      }
      else {
	while (basis[bi].p!=(*it>>8))
	  ++bi;
	p[bi]+=(*it&0xff);
      }
    }
  }

  void find_bv_be(int tmp,int & bv,int &be){
    bv=1; be=-1;
    while (tmp%2==0){
      ++bv;
      tmp /= 2;
    }
    tmp /= 2;
    if (tmp%2)
      be=1;
    else
      be=-1;
  }


#ifdef PRIMES32
  // Change b coeff of polynomial: update roots for small primes
  // for large primes do it depending on LP_TAB_TOGETHER
#ifdef LP_SMALL_PRIMES
  void copy(vector<basis_t> & basis,vector<small_basis_t> & small_basis){
    small_basis_t * small_basisptr=&small_basis[0], * small_basisend=small_basisptr+small_basis.size();
    basis_t * basisptr=&basis[0];
    unsigned next=2,logp=1;
    if (small_basis[0].p==0){
      for (;small_basisptr<small_basisend;++basisptr,++small_basisptr){
	small_basisptr->root1=basisptr->root1;
	small_basisptr->root2=basisptr->root2;
	register unsigned short p =basisptr->p;
	small_basisptr->p = p;
	small_basisptr->logp=logp;
	if (p>next){
	  ++logp;
	  next *= 2;
	}
      }
    }
    else {
      for (;small_basisptr<small_basisend;++basisptr,++small_basisptr){
	small_basisptr->root1=basisptr->root1;
	small_basisptr->root2=basisptr->root2;
      }
    }
  }

  void switch_roots(const vector<int> & bainv2,vector<basis_t> & basis,vector<small_basis_t> & small_basis,unsigned lp_basis_pos,unsigned nslices,unsigned slicesize,unsigned bv,int be,int afact,const vector<ushort_t> & pos,gen b,mpz_t & zq,int M){
    unsigned bs=basis.size();
    const int * bvpos=&bainv2[(bv-1)*bs];
#ifdef LP_TAB_TOGETHER
    const int * bvposend=bvpos+lp_basis_pos;
#else
    const int * bvposend=bvpos+bs;
#endif
    basis_t * basisptr=&basis[0];
    if (be>0){
      for (;bvpos<bvposend;++basisptr,++bvpos){
	// PREFETCH(basisptr+4);
	// PREFETCH(bvpos+4);
	register unsigned p=basisptr->p;
	register int r=basisptr->root1-(*bvpos);
	if (r<0)
	  r+=p;
	basisptr->root1=r;
	r=basisptr->root2-(*bvpos);
	if (r<0)
	  r+=p;
	basisptr->root2=r;
      }
    }
    else {
      for (;bvpos<bvposend;++basisptr,++bvpos){
	// PREFETCH(basisptr+4);
	// PREFETCH(bvpos+4);
	register unsigned p=basisptr->p;
	register int r=basisptr->root1+(*bvpos);
	if (r>p)
	  r-=p;
	basisptr->root1=r;
	r=basisptr->root2+(*bvpos);
	if (r>p)
	  r-=p;
	basisptr->root2=r;
      }
    }
    // adjust sieve position for prime factors of a, 
    for (int j=0;j<afact;++j){
      int pj=pos[j];
      ushort_t p=basis[pj].p; 
      int q,bmodp=p-modulo(*b._ZINTptr,p);
      int cmodp=modulo(zq,p);
      q=(M+longlong(cmodp)*invmodnoerr((2*bmodp)%p,p))%p;
      if (q<0)
	q+=p;
      basis[pj].root1=q;
      basis[pj].root2=q;
    }
    // set small primes position for sieving
    copy(basis,small_basis);
  }

#else // LP_SMALL_PRIMES

  void switch_roots(const vector<int> & bainv2,vector<basis_t> & basis,unsigned lp_basis_pos,unsigned nslices,unsigned slicesize,unsigned bv,int be,int afact,const vector<ushort_t> & pos,gen b,mpz_t & zq,int M){
    unsigned bs=basis.size();
#ifdef LP_TAB_SIZE
    const int * bvpos=&bainv2[(bv-1)*bs],* bvposend=bvpos+lp_basis_pos;
#else
    const int * bvpos=&bainv2[(bv-1)*bs],* bvposend=bvpos+bs;
#endif
    basis_t * basisptr=&basis[0];
    unsigned decal0=nslices*slicesize;
    if (decal0>=basis.back().p){
      if (be<0){
	for (;bvpos<bvposend;++basisptr,++bvpos){
	  register unsigned p=basisptr->p;
	  register unsigned decal = (decal0+(*bvpos))% p;
	  register unsigned r=basisptr->root1+decal;
	  if (r>p)
	    r -= p;
	  basisptr->root1 = r;
	  r = basisptr->root2+decal;
	  if (r>p)
	    r -= p;
	  basisptr->root2 = r;
	}
      }
      else {
	for (;bvpos<bvposend;++basisptr,++bvpos){
	  register unsigned p=basisptr->p;
	  register unsigned decal = (decal0-(*bvpos))% p;
	  register unsigned r=basisptr->root1+decal;
	  if (r>p)
	    r -= p;
	  basisptr->root1 = r;
	  r = basisptr->root2+decal;
	  if (r>p)
	    r -= p;
	  basisptr->root2 = r;
	}
      }
    }
    else 
      { // should not be reached since Mtarget is about basis.back()
	for (;bvpos<bvposend;++basisptr,++bvpos){
	  register unsigned p=basisptr->p;
	  register unsigned decal = (decal0+p-be*(*bvpos))% p;
	  register unsigned r=basisptr->root1+decal;
	  if (r>p)
	    r -= p;
	  basisptr->root1 = r;
	  r = basisptr->root2+decal;
	  if (r>p)
	    r -= p;
	  basisptr->root2 = r;
	}
      }
    // adjust sieve position for prime factors of a, 
    for (int j=0;j<afact;++j){
      int pj=pos[j];
      ushort_t p=basis[pj].p; 
      int q,bmodp=p-modulo(*b._ZINTptr,p);
      int cmodp=modulo(zq,p);
      q=(M+longlong(cmodp)*invmodnoerr((2*bmodp)%p,p))%p;
      if (q<0)
	q+=p;
      basis[pj].root1=q;
      basis[pj].root2=q;
    }
#if defined(LP_TAB_SIZE) && !defined(LP_TAB_TOGETHER)
    bvposend += bs-lp_basis_pos;
    if (be>0){
      for (;bvpos<bvposend;++basisptr,++bvpos){
	// PREFETCH(basisptr+4);
	// PREFETCH(bvpos+4);
	register unsigned p=basisptr->p;
	register int r=basisptr->root1-(*bvpos);
	if (r<0)
	  r+=p;
	basisptr->root1=r;
	r=basisptr->root2-(*bvpos);
	if (r<0)
	  r+=p;
	basisptr->root2=r;
      }
    }
    else {
      for (;bvpos<bvposend;++basisptr,++bvpos){
	// PREFETCH(basisptr+4);
	// PREFETCH(bvpos+4);
	register unsigned p=basisptr->p;
	register int r=basisptr->root1+(*bvpos);
	if (r>int(p))
	  r-=p;
	basisptr->root1=r;
	r=basisptr->root2+(*bvpos);
	if (r>int(p))
	  r-=p;
	basisptr->root2=r;
      }
    }
#endif
  }
#endif // LP_SMALL_PRIMES
#endif // PRIMES32

  // Change a, the leading coeff of polynomial: initialize all roots (small and large primes)
  void init_roots(vector<basis_t> & basis,
#ifdef LP_SMALL_PRIMES
		  vector<small_basis_t> & small_basis,
#endif
#ifdef WITH_INVA
		  vector<ushort_t> & Inva,
#endif
#ifdef SQRTMOD_OUTSIDE
		  const vector<ushort_t> & sqrtmod,
#endif
#ifdef PRIMES32
		  vector<int> & bainv2,int afact,int afact0,
#else
		  ulonglong usqrta,
#endif
		  const gen & a,const gen & b,const vecteur & bvalues,mpz_t & zq,unsigned M){
    unsigned bs=unsigned(basis.size());
    basis_t * basisptr=&basis.front(),*basisend=basisptr+bs; 
#ifdef SQRTMOD_OUTSIDE
    vector<ushort_t>::const_iterator sqrtmodit=sqrtmod.begin();
#endif
    for (int i=0;basisptr!=basisend;++i,++basisptr){
      ushort_t p=basisptr->p;
      // find inverse of a mod p
#ifdef PRIMES32
      int j=invmodnoerr(modulo(*a._ZINTptr,p),p);
      // deltar[i]=((2*ulonglong(basis[i].sqrtmod))*j)%p;
#else // PRIMES32
      unsigned modu=usqrta%p;
      modu=(modu*modu)%p;
      int j=invmodnoerr(modu,p);	
#endif // PRIMES32
      if (j<0) 
	j += p;
      unsigned inva=j;
#ifdef WITH_INVA
      Inva[i]=inva;
#else
#ifdef PRIMES32
      // set roots change values for all b coeffs for this a
      if (afact>afact0){
	int * ptr=&bainv2[i];
	for (int j=1;j<afact;ptr+=bs,++j){
	  // PREFETCH(ptr+bs);
	  *ptr=modmult(modulo(*bvalues[j]._ZINTptr,p),2*inva,p);
	}
      }
#endif // PRIMES32
#endif // WITH_INVA
      // compute roots mod p
#ifdef SQRTMOD_OUTSIDE
      ushort_t sqrtm=*sqrtmodit;
      ++sqrtmodit; 
#else
      ushort_t sqrtm=basisptr->sqrtmod;
#endif
      int bmodp=p-modulo(*b._ZINTptr,p);
      if (inva){
	if (p<=37000){
	  // sqrtm<=p/2, bmodp<p, inva<p hence (bmodp+sqrtm)*inva<=(3p/2-1)*(p-1)
	  // this leaves M up to about 203 millions
	  basisptr->root1=(M+(bmodp+sqrtm)*inva) % p;
	  basisptr->root2=(M+(bmodp+p-sqrtm)*inva) % p;
	  continue;
	}
#ifdef _I386_
	register int q=M;
	addmultmod(q,bmodp+sqrtm,inva,p);
	basisptr->root1=q;
	q=M;
	addmultmod(q,bmodp+p-sqrtm,inva,p);
	basisptr->root2=q;
#else
	basisptr->root1=(M+longlong(bmodp+sqrtm)*inva) % p;
	basisptr->root2=(M+longlong(bmodp+p-sqrtm)*inva) % p;
#endif
	continue;
      }
      int cmodp=modulo(zq,p);
      int q=(M+longlong(cmodp)*invmodnoerr((2*bmodp)%p,p))%p;
      if (q<0)
	q+=p;
      basisptr->root2=q;
      basisptr->root1=q;
    }
#ifdef WITH_INVA
#ifdef PRIMES32
    if (afact>afact0){
      int * bainv2ptr=&bainv2.front();
      basis_t * basisptr,*basisend=&basis.front()+bs; 
      for (int j=1;j<afact;++j){
	if (bvalues[j].type==_INT_){
	  int bjj=bvalues[j].val;
	  vector<ushort_t>::const_iterator invait=Inva.begin();
	  for (basisptr=&basis.front();basisptr<basisend;++invait,++bainv2ptr,++basisptr){
	    register int r=(bjj*longlong(2*(*invait))) % basisptr->p;
	    if (r<0)
	      r += basisptr->p;
	    *bainv2ptr=r;
	  }
	}
	else {
	    // longlong up1=up1tmp[2*j]; 
	    // longlong tmp=up1tmp[2*j+1];
	    // tmp is <= P^2 where P is the largest factor of a
	  mpz_t & bz=*bvalues[j]._ZINTptr;
	  vector<ushort_t>::const_iterator invait=Inva.begin();
	  for (basisptr=&basis.front();basisptr<basisend;++invait,++bainv2ptr,++basisptr){
	    register int p=basisptr->p;
	    *bainv2ptr=((modulo(bz,p))*longlong(2*(*invait))) % p;
	  }
	}
      }
    }
#endif // PRIMES32
#endif // WITH_INVA
    
#ifdef LP_SMALL_PRIMES // copy primes<2^16 into small_basis
    copy(basis,small_basis);
#endif
  }

  // find relations using (a*x+b)^2=a*(a*x^2+b*x+c) mod n where
  // we sieve on [-M,M] for as many polynomials as required
  // a is a square, approx sqrt(2*n)/M, and n is a square modulo all primes dividing a
  // b satisifies b^2=n mod a (b in [0,a[)
  // c=(n-b^2)/a
  bool msieve(const gen & n_orig,gen & pn,GIAC_CONTEXT){
    if (n_orig.type!=_ZINT)
      return false;
    // find multiplier
    double delta;
    int multiplier=find_multiplier(n_orig,delta,contextptr);
    gen N(multiplier*n_orig);
    double Nd=evalf_double(N,1,contextptr)._DOUBLE_val;
#if defined RTOS_THREADX || defined NSPIRE
    if (Nd>1e40) return false;
#endif
#ifdef BESTA_OS
    if (Nd>1e40) return false;
#endif
#ifdef PRIMES32
    if (Nd>1e76) return false;
#else
    if (Nd>1e63) return false;
#endif
    int Ndl=int(std::log10(Nd)-std::log10(double(multiplier))+.5); // +2*delta);
#ifdef LP_TAB_SIZE
    int slicesize=(1 << LP_TAB_SIZE);
#else
    int slicesize=(QS_SIZE>=65536 && Ndl<61)?32768:QS_SIZE;
#endif
    double B=std::exp(std::sqrt(2.0)/4*std::sqrt(std::log(Nd)*std::log(std::log(Nd))))*0.45;
    if (B<200) B=200;
    int pos1=70,pos0=23,afact=2,afixed=0; // pos position in the basis, afact number of factors
    // FIXME Will always include the 3 first primes of the basis
    // set a larger Mtarget gives less polynomials but also use less memory
#if defined(RTOS_THREADX) || defined(RTOS_THREADX) || defined NSPIRE
    double Mtarget=0.95e5;
    if (Nd>1e36)
      Mtarget=1.2e5;
#else
    double Mtarget=0.55e5;
#ifndef USE_MORE_PRIMES // FIXME improve! in fact use more primes on Core, less on Opteron
    if (Ndl>=50){
      Ndl-=50;
      short int Btab[]={ 
	// 50
	1900,2100,2300,2500,2700,2900,3100,3400,3700,4000,
	// 60
	4300,4600,4900,5300,5700,6200,6800,7500,8300,9200,
	// 70
	10000,11000,12000,13000,14000,15000,16000
      };
      if (Ndl<sizeof(Btab)/sizeof(short int))
	B=Btab[Ndl];
      Mtarget=0.66e5;
      if (Ndl>7)
	Mtarget=0.95e5;
      if (Ndl>11) 
	Mtarget=1.3e5;
      if (Ndl>15) 
	Mtarget=1.6e5;
      if (Ndl>19) 
	Mtarget=1.92e5;
    }
#else
    if (Ndl>=50)
      Mtarget=0.85e5;
    if (Ndl>65) 
      Mtarget=1.3e5;
#endif
#endif
    if (debug_infolevel)
      *logptr(contextptr) << "" << CLOCK() << gettext(" sieve on ") << N << endl << gettext("Number of primes ") << B << endl;
    // first compute the prime basis and sqrt(N) mod p, p in basis
    vector<basis_t> basis;
    basis.reserve(unsigned(B));
#ifdef SQRTMOD_OUTSIDE
    vector<ushort_t> sqrtmod;
    sqrtmod.reserve(basis.capacity());
    basis.push_back(2);
    sqrtmod.push_back(1);
#else
    basis.push_back(basis_t(2,1)); // I assume that N is odd... hence has sqrt 1 mod 2
#endif
    N.uncoerce();
    // vector<ushort_t> N256;
    int i;
    mpz_t zx,zy,zq,zr;
    mpz_init(zx); mpz_init(zy); mpz_init(zq); mpz_init(zr);
    // fastsmod_prepare(N,zx,zy,zr,N256);
    for (i=1;i<int(sizeof(giac_primes)/sizeof(short));++i){
#ifdef TIMEOUT
      control_c();
#endif
      if (ctrl_c || interrupted)
	break;
      ushort_t j=giac_primes[i];
      if (debug_infolevel>6 && (i%500==99))
	*logptr(contextptr) << CLOCK() << gettext(" sieve current basis size ") << basis.size() << endl;
#if 1 // def USE_GMP_REPLACEMENTS
      // int n=fastsmod_compute(N256,j);
      int n=modulo(*N._ZINTptr,j),s;
#else
      int n=smod(N,j).val,s;
#endif
      if (n<0)
	n+=j;
      if (n==0){
#ifdef SQRTMOD_OUTSIDE
	basis.push_back(j);
	sqrtmod.push_back(0);
#else
	basis.push_back(basis_t(j,0));
#endif
      }
      else {
	if (powmod(n,(unsigned long)((j-1)/2),(int)j)==1){
	  s=sqrt_mod(n,int(j),true,contextptr).val;
	  if (s<0)
	    s+=j;
#ifdef SQRTMOD_OUTSIDE
	  basis.push_back(j);
	  sqrtmod.push_back(s);
#else
	  basis.push_back(basis_t(j,s));
#endif
	}
      }
      if (basis.size()>=B)
	break;
    }
    vector<unsigned> crible;
    int jp=0;
    if (basis.size()<B){
#ifdef PRIME_SIEVE
      fill_crible(crible,int(2.5*B*std::log(B)));
      jp=nextprime(crible,basis.back().p+1);
#else
      jp=nextprime(int(basis.back().p+1)).val;
#endif
    }
    unsigned lp_basis_pos=0; // position of first prime > 2^16 in the basis
    for (;basis.size()<B;++i){
#ifdef TIMEOUT
      control_c();
#endif
      if (ctrl_c || interrupted)
	break; 
#ifndef PRIMES32
      if (jp>65535){ 
	break;
      }
#endif
      if (debug_infolevel>6 && (i%500==99))
	*logptr(contextptr) << CLOCK() << gettext(" sieve current basis size ") << basis.size() << endl;
#if 1 // def USE_GMP_REPLACEMENTS
      // int n=fastsmod_compute(N256,jp);
      int n=modulo(*N._ZINTptr,jp),s;
#else
      int n=smod(N,jp).val,s;
#endif
      if (n<0)
	n+=jp;
      if (powmod(n,(unsigned long)((jp-1)/2),jp)==1){
	s=sqrt_mod(n,jp,true,contextptr).val;
	if (s<0)
	  s += jp;
#ifdef LP_TAB_SIZE
	if (!lp_basis_pos && jp> (1<<LP_BIT_LIMIT))
	  lp_basis_pos=basis.size();
#endif
#ifdef SQRTMOD_OUTSIDE
	basis.push_back(jp);
	sqrtmod.push_back(s);
#else
	basis.push_back(basis_t(jp,s));
#endif
      }
#ifdef PRIME_SIEVE
      jp=nextprime(crible,jp+1);
#else
      jp=nextprime(int(jp+1)).val;
#endif
    }
    if (!lp_basis_pos)
      lp_basis_pos=unsigned(basis.size());
#ifdef LP_SMALL_PRIMES
    vector<small_basis_t> small_basis(lp_basis_pos); // will be filled by primes<2^16
#endif
#ifdef TIMEOUT
    control_c();
#endif
    if (ctrl_c || interrupted){
      mpz_clear(zx); mpz_clear(zy); mpz_clear(zq);  mpz_clear(zr);
      return false;
    }
    double dtarget=1.1;
    if (Mtarget<basis.back().p*dtarget){
      Mtarget=basis.back().p*dtarget; // (int(basis.back().p*1.1)/slicesize)*slicesize;
    }
    unsigned ps=sizeinbase2(basis.back().p);
#if !defined(RTOS_THREADX) && !defined(BESTA_OS) && !defined NSPIRE // def USE_MORE_PRIMES
    unsigned maxadditional=(2+(basis.back().p>>16))*basis.back().p*ps;
#else
    unsigned maxadditional=3*basis.back().p*ps;
#endif
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << gettext(" sieve basis OK, size ") << basis.size() << " largest prime in basis " << basis.back().p << " large prime " << maxadditional << " Mtarget " << Mtarget << endl ;
    int bs=int(basis.size());
    gen isqrtN=isqrt(N);
    isqrtN.uncoerce(); 
    // now compare isqrtN to a^2 for a in the basis
    double seuil=1.414*evalf_double(isqrtN,1,contextptr)._DOUBLE_val/Mtarget; // should be a
    seuil=std::sqrt(seuil); // should be product of primes of the basis
#ifdef OLD_AFACT
    double dfactors=std::log10(seuil)/3;
    // fixed primes are choosen at basis[pos0], variables are choosen around 2000
    afact=int(dfactors+.5);
    if (afact<=1){
      afact=1;
      int i=20;
      for (;i<3*bs/4;++i){
	if (seuil<basis[i].p){
	  pos1=i;
	  break;
	}
      }
      if (i>=3*bs/4){
	afact=2;
	for (;i<3*bs/4;++i){
	  if (seuil<basis[i].p){
	    pos1=i;
	    break;
	  }
	}
      }
    }
    else {
      if (afact==2){
	seuil=std::sqrt(seuil);
	for (int i=20;i<3*bs/4;++i){
	  if (seuil<basis[i].p){
	    pos1=i;
	    break;
	  }
	}
      }
      else { // afact>=3, 
	if (dfactors>5.4){
	  dfactors -= 3; // 3 large primes
	  afixed = dfactors/.8; // at least 3 fixed
	  afact = 3 + afixed;
	}
	else {
	  dfactors -= 2; // 2 large primes
	  afixed = dfactors/.8;
	  if (afixed==0)
	    afixed=1;
	  afact = 2 +afixed;
	}
	for (int i=0;i<afixed;++i){
	  seuil=seuil/basis[pos0+i].p;
	}
	seuil=std::pow(seuil,1./(afact-afixed));
	for (int i=pos0+afixed+10;i<3*bs/4;++i){
	  if (seuil<basis[i].p){
	    pos1=i;
	    break;
	  }
	}
      }
    }
#else // OLD_AFACT
    double logprod=std::log10(seuil);
    if (logprod<9){  
      afixed=0; 
      afact=int(std::ceil(logprod/3));
      if (logprod-3*afact<-1)
	afixed=1;
    }
    else {
      double logfixed=std::log10(double(basis[pos0].p));
      int maxfixed=int(logprod/logfixed)-2;
      if (maxfixed==0) maxfixed=1;
      double curseuil=1e10;
      afact=0;
      for (int i=1;i<=maxfixed;++i){
	double variable=(logprod-i*logfixed)/3; // we want variable primes to be around 1000
	int ivariable=int(variable);
	double seuiltest=variable/ivariable;
	if (i+ivariable>afact){
	  afixed=i;
	  afact=i+ivariable;
	  curseuil=seuiltest;
	}
      }
    }
    for (int i=0;i<afixed;++i)
      seuil=seuil/basis[pos0+i].p;
    seuil=std::pow(seuil,1./(afact-afixed));
    for (int i=pos0+afixed+10;i<3*bs/4;++i){
      if (seuil<basis[i].p){
	pos1=i-1; // -afact/2;
	break;
      }
    }
#endif // OLD_AFACT
    if (debug_infolevel){
      *logptr(contextptr) << gettext("Using ") << afact << " square factors per a coefficient in polynomials" << endl;
      *logptr(contextptr) << afixed << gettext(" fixed begin at ") << basis[pos0].p << " and " << afact-afixed << " variables at " << basis[pos1].p << endl; 
    }
    vector<ushort_t> isqrtN256;
    // fastsmod_prepare(isqrtN,zx,zy,zr,isqrtN256);
    vector<short_t> isqrtNmodp(bs);
    for (int i=0;i<bs;++i){
#if 1
      // isqrtNmodp[i]=fastsmod_compute(isqrtN256,basis[i].p);
      isqrtNmodp[i]=modulo(*isqrtN._ZINTptr,basis[i].p);
#else
      isqrtNmodp[i]=smod(isqrtN,basis[i].p).val;
#endif
    }
#if defined(RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
    unsigned puissancestablength=10000;
#else
#if 1 // def USE_MORE_PRIMES
    unsigned puissancestablength=bs*(80+bs/500);
#else
    unsigned puissancestablength=bs*80;
#endif
#endif
    ushort_t * puissancestab=new ushort_t[puissancestablength];
    ushort_t * puissancesptr=puissancestab;
    ushort_t * puissancesend=puissancestab+puissancestablength;
    slicetype * slice=0;
    if (puissancestab)
      slice=new slicetype[QS_SIZE];
    if (!slice){
      mpz_clear(zx); mpz_clear(zy); mpz_clear(zq);  mpz_clear(zr);
      return false;
    }
    // relations will be written in column
    vector<axbinv> axbmodn; // contains (sqrta,b,x)
    vector<additional_t> additional_primes;
#ifndef ADDITIONAL_PRIMES_HASHMAP
    vector<bool> additional_primes_twice;
#endif
#ifdef LP_TAB_SIZE
    vector<lp_tab_t> lp_map(128); // at most 128 slices in a sieve
#endif
    vecteur sqrtavals,bvals;
#ifdef GIAC_ADDITIONAL_PRIMES
#ifdef ADDITIONAL_PRIMES_HASHMAP
#ifdef EMCC
    additional_map_t additional_primes_map;
#else
    additional_map_t additional_primes_map(8*bs);
#endif
    axbmodn.reserve(bs);
#else 
#if defined(RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
    additional_primes.reserve(bs);
    additional_primes_twice.reserve(bs);
    axbmodn.reserve(2*bs);
#else
    additional_primes.reserve(4*bs);
    additional_primes_twice.reserve(4*bs);
    axbmodn.reserve(5*bs);
#endif
    sqrtavals.reserve(bs/7);
    bvals.reserve(2*bs/7);
#endif // ADDITIONAL_PRIMES_HASHMAP
#else // GIAC_ADDITIONAL_PRIMES
    axbmodn.reserve(bs+1);
#endif
    // now sieve
    unsigned todo_rel;
    unsigned marge=bs/100;
    if (marge<15)
      marge=15;
    mpz_t alloc1,alloc2,alloc3,alloc4,alloc5;
    mpz_init(alloc1); mpz_init(alloc2); mpz_init(alloc3); mpz_init(alloc4); mpz_init(alloc5);
    // vector<ushort_t> a256,b256,tmpv;
    vector<ushort_t> curpuissances,recheck,pos(afact);
#ifdef WITH_INVA
    vector<ushort_t> Inva(bs);
#endif
    vecteur bvalues; // will contain values of b if afact<=afact0 or components of b if afact>afact0
    // array for efficient polynomial switch (same a change b) when at least afact0 factors/a
#ifdef PRIMES32
    const int afact0=3;
    vector<int> bainv2((afact-1)*bs);
    vector<longlong> up1tmp;
#endif
    for (int i=0;i<afixed;++i)
      pos[i]=pos0+i;
    for (int i=afixed;i<afact;++i)
      pos[i]=pos1+i-afixed; // FIXME should be -afixed
    double Mval=1;
    for (int i=0;i<afact;++i)
      Mval=Mval*basis[pos[i]].p;
    Mval=std::sqrt(2*Nd)/(Mval*Mval);
    if (debug_infolevel)
      *logptr(contextptr) << gettext("First M ") << Mval << endl;
    Mtarget=Mval;
    int avar=afact-afixed;
    int end_pos1=2*pos1;
    if (avar>1)
      end_pos1=pos1+100;
    if (avar>2)
      end_pos1=pos1+30;
    if (int(lp_basis_pos)<end_pos1)
      end_pos1=lp_basis_pos;
    for (;puissancesptr<puissancesend;++pos.back()){
      double bpos2=1;
      if (int(pos.back())>=end_pos1 || basis[pos.back()].p>=45000){
	int i=afact-2;
	for (;i>afixed;--i){
	  if (int(pos[i])<end_pos1-(afact-i)){
	    ++pos[i];
	    for (int j=i+1;j<afact;++j)
	      pos[j]=pos[i]+(j-i);
	    break;
	  }
	}
	if (i<=afixed){
	  --pos1;
	  if (pos1<=5){
	    mpz_clear(zx); mpz_clear(zy); mpz_clear(zq);  mpz_clear(zr);
	    mpz_clear(alloc1); mpz_clear(alloc2); mpz_clear(alloc3); mpz_clear(alloc4); mpz_clear(alloc5);
	    delete [] puissancestab;
	    return false;
	  }
	  // reset fixed factors
	  for (i=0;i<afixed;++i)
	    pos[i]=pos0+i;
	  for (i=afixed;i<afact;++i)
	    pos[i]=pos1+i-afixed;
	}
      }
      for (int i=0;i<afact;++i)
	bpos2=bpos2*basis[pos[i]].p;
      Mval=std::sqrt(2*Nd)/(bpos2*bpos2);
      if (afixed){
	// move "fixed" factors so that Mval becomes closer to Mtarget
	// NB: for later threads, afixed should be >=3, so that we can move pos[1] by thread
	while (Mval>1.1*Mtarget && int(pos[afixed-1])<int(pos1)-10){
	  // Mval is too large, hence one factor of a is too small, increase it
	  if (int(pos[0])<pos0){
	    ++pos[0];
	    double coeff=basis[pos[0]].p/double(basis[pos[0]-1].p);
	    Mval=Mval/(coeff*coeff);
	  }
	  else {
	    ++pos[afixed-1];
	    double coeff=basis[pos[afixed-1]].p/double(basis[pos[afixed-1]-1].p);
	    Mval=Mval/(coeff*coeff);	    
	  }
	}
	while (Mval<0.9*Mtarget && pos[0]>10){
	  // Mval is too small, decrease one factor of a
	  --pos[0];
	  if (pos[0]<=10){
	    Mval=0;
	    break;
	  }
	  double coeff=basis[pos[0]].p/double(basis[pos[0]+1].p);
	  Mval=Mval/(coeff*coeff);
	}
      }
      if ( Mval <0.7*Mtarget ){
	if (pos1>pos0+afixed+5 || Mval<32768){
	  // CERR << pos ;
	  int i=afact-1;
	  for (;i>afixed+1;--i){
	    if (pos[i]>pos[i-1]+5)
	      break;
	  }
	  if (i<=afixed+1){
	    --pos1;
	    for (i=0;i<afixed;++i)
	      pos[i]=pos0+i;
	    for (i=afixed;i<afact;++i)
	      pos[i]=pos1+i-afixed;
	  }
	  else {
	    ++pos[i-1];
	    for (;i<afact;++i)
	      pos[i]=pos[i-1]+1;
	  }
	  // CERR << pos << endl;
	}
      }
      // finished?
#ifdef TIMEOUT
      control_c();
#endif
      if (ctrl_c || interrupted)
	break;
#ifdef ADDITIONAL_PRIMES_HASHMAP
      todo_rel=bs+marge;
#else
      todo_rel=bs+marge+unsigned(additional_primes.size());
#endif
      if (axbmodn.size()>=todo_rel)
	break;
      int nrelationsa=0;
      // Not finished yet, construct a new value of a around ad=sqrt(2*n)/M 
      // using a product of afact square of primes that are in the basis
      // and construct a vector of 2^(afact-1) corresponding values of b
      // and compute the values of inverses of a mod p
      ulonglong usqrta(basis[pos[0]].p);
      for (int i=1;i<afact;++i)
	usqrta=basis[pos[i]].p*usqrta; // works up to about N=1e86
      gen sqrta((int) basis[pos[0]].p);
      for (int i=1;i<afact;++i)
	sqrta=gen(int(basis[pos[i]].p))*sqrta;
      sqrtavals.push_back(sqrta);
      gen a=sqrta*sqrta; // a should be about sqrt(Nd/2)/M
      a.uncoerce();
      int M=int(std::floor(std::sqrt(Nd*2)/evalf_double(a,1,contextptr)._DOUBLE_val));
      if (debug_infolevel>6)
	*logptr(contextptr) << CLOCK() << gettext(" initial value for M= ") << M << endl;
      int nslices=int(std::ceil((2.*M)/slicesize));
      M=(nslices*slicesize)/2;
      bvalues.clear();
      gen curprod=1;
      for (int i=0;;){
#ifdef SQRTMOD_OUTSIDE
	int s=sqrtmod[pos[i]]; 
#else
	int s=basis[pos[i]].sqrtmod; 
#endif
	int p=basis[pos[i]].p;
	longlong p2=p*longlong(p); 
	// Hensel lift s to be a sqrt of n mod p^2: (s+p*r)^2=s^2+2p*r*s=n => r=(n-s^2)/p*inv(2*s mod p)
	int r=p<37000?int((modulo(*N._ZINTptr,p2)-s*s)/p):((smod(N,p2)-s*s)/p).val;
	r=(r*invmod(2*s,p))%p;
	// overflow should not happen because p is a factor of a hence choosen
	// in the 1000 range (perhaps up to 10 000, but not much larger)
	// if ((longlong(r)*p)!=r*p) CERR << "overflow" << endl;
	s += p*r;
#ifdef PRIMES32
	if (afact>afact0){
	  // store s*(inv( product(basis[pos[j]]^2,j!=i) mod p2)) in bvalues[i]
	  longlong up1=(usqrta/p);
	  longlong up=up1%p2;
	  up=(up*up)%p2;
	  //longlong tmp=(s*invmodnoerr(up,p2))%p2;
	  //up1tmp.push_back(up1);
	  //up1tmp.push_back(tmp);
	  gen tmp=smod(s*invmod(gen(up),gen(p2)),p2);
	  if (is_greater(0,tmp,contextptr)) tmp=-tmp;
	  gen gup1(up1);
	  bvalues.push_back(gup1*gup1*tmp);
	  bvalues.back().uncoerce();
	}
	else 
#endif
	  {
	    if (bvalues.empty())
	      bvalues.push_back(s);
	    else {
	      int js=int(bvalues.size());
	      for (int j=0;j<js;++j){
		bvalues.push_back(ichinrem(bvalues[j],-s,curprod,p2));
		bvalues[j]=ichinrem(bvalues[j],s,curprod,p2);
	      }
	    }
	  }
	++i;
	if (i==afact)
	  break;
	curprod = p*(p*curprod);
      } // end for
      // compute inverse of a modulo p (will set to 0 if not invertible)
      if (debug_infolevel>6)
	*logptr(contextptr) << CLOCK() << gettext(" Computing inverses mod p of the basis ") << endl;
      // fastsmod_prepare(a,zx,zy,zr,a256);
      gen b;
      for (int i=0;i< (1<<(afact-1));++i){
#ifdef TIMEOUT
	control_c();
#endif
	if (ctrl_c || interrupted)
	  break;
#ifdef ADDITIONAL_PRIMES_HASHMAP
	todo_rel=bs+marge;
#else
	todo_rel=bs+marge+unsigned(additional_primes.size());
#endif
	if (axbmodn.size()>=todo_rel)
	  break;
	if (debug_infolevel>6)
	  *logptr(contextptr) << CLOCK() << gettext(" Computing c ") << endl;
#ifdef PRIMES32
	int bv=1,be=-1;
	if (afact>afact0){
	  if (i==0){
	    b=0;
	    for (unsigned j=0;j<bvalues.size();j++)
	      b += bvalues[j];
	  }
	  else {
	    find_bv_be(i,bv,be);
	    b += (2*be)*bvalues[bv];
	  }
	}
	else
	  b=bvalues[i];
#else
	b=bvalues[i];
#endif
	b.uncoerce();
	mpz_mul(zx,*b._ZINTptr,*b._ZINTptr);
	mpz_sub(zy,zx,*N._ZINTptr);
#ifdef USE_GMP_REPLACEMENTS
	mp_grow(&alloc1,zy.used+2);
	mpz_set_ui(alloc1,0);
	alloc1.used = zy.used +2 ;
	mpz_set(alloc2,zy);
	mpz_set(alloc3,*a._ZINTptr);
	alloc_mp_div(&zy,a._ZINTptr,&zq,&zr,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
	mpz_divexact(zq,zy,*a._ZINTptr);
#endif
	// gen c=zq; // gen c=(b*b-N)/a;
	// c.uncoerce();
#ifdef PRIMES32
	if (afact<=afact0)
#endif
	  {
	    bool bneg=mpz_cmp_ui(*b._ZINTptr,0)<0;
	    if (bneg)
	      mpz_neg(*b._ZINTptr,*b._ZINTptr);
	  }
	bvals.push_back(b);
	if (debug_infolevel>6)
	  *logptr(contextptr) << CLOCK() << gettext(" Computing roots mod the basis ") << endl;
	// fastsmod_prepare(b,zx,zy,zr,b256);
#ifdef PRIMES32 
	if (i && afact>afact0)
	  switch_roots(bainv2,basis,
#ifdef LP_SMALL_PRIMES
		       small_basis,
#endif
		       lp_basis_pos,nslices,slicesize,bv,be,afact,pos,b,zq,M);
	else {
	  init_roots(basis,
#ifdef LP_SMALL_PRIMES
		     small_basis,
#endif
#ifdef WITH_INVA
		     Inva,
#endif
#ifdef SQRTMOD_OUTSIDE
		     sqrtmod,
#endif
		     bainv2,afact,afact0,
		     a,b,bvalues,zq,M);
#ifdef LP_TAB_TOGETHER
	  // init all hashtable for large primes at once
	  unsigned cl;
	  if (debug_infolevel>3){
	    cl=CLOCK();
	    *logptr(contextptr) << cl << gettext(" Init large prime hashtables ") << endl;
	  }
	  int total=(nslices << (afact-1));
	  if (int(lp_map.size()) < total)
	    lp_map.resize(total);
	  for (int k=0;k< total;++k)
	    lp_map[k].clear();
	  if (lp_basis_pos){
	    for (int k=0;;){
	      basis_t * bit=&basis[lp_basis_pos], * bitend=&basis[0]+bs;
	      unsigned endpos=nslices*slicesize;
	      lp_tab_t * ptr=&lp_map[0]+k*nslices;
	      for (;bit!=bitend;++bit){
		register ushort_t p=bit->p;
		register unsigned pos=bit->root1;
		for (;pos<endpos; pos += p){
		  (ptr+(pos >> LP_TAB_SIZE))->push_back(lp_entry_t((pos & LP_MASK),p));
		}
		pos=bit->root2;
		for (;pos<endpos; pos += p){
		  (ptr+(pos >> LP_TAB_SIZE))->push_back(lp_entry_t((pos & LP_MASK),p));
		}
	      }
	      ++k;
	      if (k== (1 << (afact-1))){
		if (debug_infolevel>3){
		  unsigned cl2=CLOCK();
		  *logptr(contextptr) << cl2 << gettext(" End large prime hashtables ") << cl2-cl << endl;
		}
		break;
	      }
	      find_bv_be(k,bv,be);
	      // switch roots to next polynomial
	      int * bvpos=&bainv2[(bv-1)*bs],* bvposend=bvpos+bs;
	      bvpos += lp_basis_pos;
	      basis_t * basisptr=&basis[lp_basis_pos];
	      if (be>0){
		for (;bvpos<bvposend;++basisptr,++bvpos){
		  register unsigned p=basisptr->p;
		  register int r=basisptr->root1-(*bvpos);
		  if (r<0)
		    r+=p;
		  basisptr->root1=r;
		  r=basisptr->root2-(*bvpos);
		  if (r<0)
		    r+=p;
		  basisptr->root2=r;
		}
	      }
	      else {
		for (;bvpos<bvposend;++basisptr,++bvpos){
		  register unsigned p=basisptr->p;
		  register int r=basisptr->root1+(*bvpos);
		  if (r>int(p))
		    r-=p;
		  basisptr->root1=r;
		  r=basisptr->root2+(*bvpos);
		  if (r>int(p))
		    r-=p;
		  basisptr->root2=r;
		}
	      }
	    }
	  }
#endif // LP_TAB_TOGETHER
	} // end else of if i==0
#if defined(LP_TAB_SIZE) && !defined(LP_TAB_TOGETHER)
	if (int(lp_map.size()) < nslices)
	  lp_map.resize(nslices);
	for (int k=0;k< nslices;++k)
	  lp_map[k].clear();
	if (lp_basis_pos){
	  basis_t * bit=&basis[lp_basis_pos], * bitend=&basis[0]+bs;
	  unsigned endpos=nslices*slicesize;
	  for (;bit!=bitend;++bit){
	    register ushort_t p=bit->p;
	    register unsigned pos=bit->root1;
	    for (;pos<endpos; pos += p){
	      lp_map[pos >> LP_TAB_SIZE].push_back(lp_entry_t((pos & LP_MASK),p));
	    }
	    pos=bit->root2;
	    for (;pos<endpos; pos += p){
	      lp_map[pos >> LP_TAB_SIZE].push_back(lp_entry_t((pos & LP_MASK),p));
	    }
	  }
	}
#endif // LP_TAB_SIZE && !LP_TAB_TOGETHER
#else // PRIMES32
	init_roots(basis,
#ifdef WITH_INVA
		     Inva,
#endif
#ifdef SQRTMOD_OUTSIDE
		   sqrtmod,
#endif
		   usqrta,a,b,bvalues,zq,M);
#endif // PRIMES32
	// we can now sieve in [-M,M[ by slice of size slicesize
#ifndef GIAC_HAS_STO_38  
	if (debug_infolevel>5){
	  *logptr(contextptr) << CLOCK();
	  *logptr(contextptr) << gettext(" Polynomial a,b,M=") << a << "," << b << "," << M << " (" << pos << ")" ;
	  *logptr(contextptr) << CLOCK() << endl;
	}
#endif  
	int nrelationsb=0;
#ifdef LP_TAB_SIZE
#endif
	for (int l=0;l<nslices;l++){
#ifdef TIMEOUT
	  control_c();
#endif
	  if (ctrl_c || interrupted)
	    break;
#ifdef ADDITIONAL_PRIMES_HASHMAP
	  todo_rel=bs+marge;
#else
	  todo_rel=bs+marge+unsigned(additional_primes.size());
#endif
	  if (axbmodn.size()>=todo_rel)
	    break;
	  int shift=-M+l*slicesize;
	  int slicerelations=msieve(a,sqrtavals,
				    bvals,zq,basis,lp_basis_pos,
#ifdef LP_SMALL_PRIMES
				    small_basis,
#endif
				    maxadditional,
#ifdef ADDITIONAL_PRIMES_HASHMAP
				    additional_primes_map,
#else
				    additional_primes,additional_primes_twice,
#endif
				    N,isqrtN,
				    slice,slicesize,shift,puissancestab,puissancesptr,puissancesend,curpuissances,recheck,
				    axbmodn,
				    zx,zy,zr,alloc1,alloc2,alloc3,alloc4,alloc5,
#ifdef LP_TAB_SIZE
#ifdef LP_TAB_TOGETHER
				    lp_map[l+nslices*i],
#else
				    lp_map[l],
#endif
#endif
				    contextptr);
	  if (slicerelations==-1){
	    *logptr(contextptr) << gettext("Sieve error: Not enough memory ") << endl;
	    break;
	  }
	  nrelationsb += slicerelations;
#ifdef ADDITIONAL_PRIMES_HASHMAP
	  todo_rel=bs+marge;
#else
	  todo_rel=bs+marge+unsigned(additional_primes.size());
#endif
	}
	if (nrelationsb==0) 
	  bvals.pop_back();
	else
	  nrelationsa += nrelationsb;
      }
#if defined( RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
      if (debug_infolevel){
#ifdef NSPIRE
	static int count_print=0;
	++count_print;
	if (count_print%4==0)
#endif
	  *logptr(contextptr) << axbmodn.size() << " of " << todo_rel << " (" << 100-100*(todo_rel-axbmodn.size())/double(bs+marge) << "%)" << endl;
      }
#endif
      if (nrelationsa==0){
	sqrtavals.pop_back();
      }
#if !defined(RTOS_THREADX) && !defined(BESTA_OS) && !defined NSPIRE
      if (debug_infolevel>1)
	*logptr(contextptr) << CLOCK()<< gettext(" sieved : ") << axbmodn.size() << " of " << todo_rel << " (" << 100-100*(todo_rel-axbmodn.size())/double(bs+marge) << "%), M=" << M << endl;
#endif
    } // end sieve loop
    if (debug_infolevel)
      *logptr(contextptr) << gettext("Polynomials a,b in use: #a ") << sqrtavals.size() << " and #b " << bvals.size() << endl;
    delete [] slice;
#ifdef TIMEOUT
    control_c();
#endif
    if (ctrl_c || interrupted || puissancesptr==puissancesend){
      mpz_clear(zx); mpz_clear(zy); mpz_clear(zq);  mpz_clear(zr);
      mpz_clear(alloc1); mpz_clear(alloc2); mpz_clear(alloc3); mpz_clear(alloc4); mpz_clear(alloc5);
      delete [] puissancestab;
      return false;
    }
    // We have enough relations, make matrix, reduce it then find x^2=y^2 mod n congruences
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << gettext(" sieve done: used ") << (puissancesptr-puissancestab)*0.002 << " K for storing relations (of " << puissancestablength*0.002 << ")" << endl;
    release_memory(isqrtNmodp);
#ifdef GIAC_ADDITIONAL_PRIMES 
#ifdef ADDITIONAL_PRIMES_HASHMAP
    additional_primes.reserve(axbmodn.size());
    vector<axbinv>::const_iterator it=axbmodn.begin(),itend=axbmodn.end();
    for (;it!=itend;++it) {
      unsigned u=largep(*it,puissancestab);
      if (u)
	additional_primes.push_back(u);
    }
    sort(additional_primes.begin(),additional_primes.end()); // for binary search later
#else
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << gettext(" removing additional primes") << endl;
    // remove relations with additional primes which are used only once
    int lastp=int(axbmodn.size())-1,lasta=int(additional_primes.size())-1;
    for (int i=0;i<=lastp;++i){
      ushort_t * curbeg=puissancestab+axbmodn[i].first, * curend=puissancestab+axbmodn[i].second;
      bool done=false;
      for (;curbeg!=curend;++curbeg){
	if (*curbeg==1)
	  break;
      }
      if (curbeg==curend)
	continue;
      ++curbeg;
      additional_t u=*curbeg;
#if GIAC_ADDITIONAL_PRIMES==32 && !defined(PRIMES32)
      u <<=16 ;
      ++curbeg;
      u += *curbeg;
#endif
      int pos=_equalposcomp(additional_primes,u);
      if (!pos)
	continue;
      if (pos>lasta){
	// *logptr(contextptr) << cur << endl;
	continue;
      }
      --pos;
      if (additional_primes_twice[pos])
	continue;
      axbmodn[i]=axbmodn[lastp];
      --lastp;
      additional_primes[pos]=additional_primes[lasta];
      additional_primes_twice[pos]=additional_primes_twice[lasta];
      --lasta;
      --i; // recheck at current index
    }
    axbmodn.resize(lastp+1);
    additional_primes.resize(lasta+1);
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << gettext(" end removing additional primes") << endl;
#endif // ADDTIONAL_PRIMES_HASHMAP
#endif // GIAC_ADDITIONAL_PRIMES
    // Make relations matrix (currently dense, FIXME improve to sparse and Lanczos algorithm)
    int C32=int(std::ceil(axbmodn.size()/32./GIAC_RREF_UNROLL))*GIAC_RREF_UNROLL;
    unsigned * tab=new unsigned[axbmodn.size()*C32],*tabend=tab+axbmodn.size()*C32;
    if (!tab){
      mpz_clear(zx); mpz_clear(zy); mpz_clear(zq); mpz_clear(zr);
      mpz_clear(alloc1); mpz_clear(alloc2); mpz_clear(alloc3); mpz_clear(alloc4); mpz_clear(alloc5);
      delete [] puissancestab;
      return false;
    }
    // init tab
    for (unsigned * ptr=tab;ptr!=tabend;++ptr)
      *ptr=0;
    int l32=C32*32;
    vector< line_t > relations(axbmodn.size());
    for (unsigned i=0;i<axbmodn.size();++i){
      relations[i].tab=tab+i*C32;
    }
    for (unsigned j=0;j<axbmodn.size();j++){
      ushort_t * curpui=puissancestab+axbmodn[j].first, * curpuiend=puissancestab+axbmodn[j].second;
      add_relation(relations,j,curpui,curpuiend,basis,additional_primes);
#ifdef ADDITIONAL_PRIMES_HASHMAP
      unsigned u=largep(axbmodn[j],puissancestab);
      if (u){
	axbinv & A=additional_primes_map[u];
	curpui=puissancestab+A.first; curpuiend=puissancestab+A.second;
	add_relation(relations,j,curpui,curpuiend,basis,additional_primes);
      }
#endif
    } // end loop on j in puissances
#ifdef RREF_SORT // seems slower
    unsigned count0=0,count1=0;
    for (int i=0;i<relations.size();++i){
      int c=relations[i].count=count_ones(relations[i].tab,C32);
      if (c==0)
	++count0;
      if (c==1)
	++count1;
      if (debug_infolevel>2){
	cout << i << ", p=";
	if (i==0) 
	  cout << "-1";
	else {
	  if (i<=bs)
	    cout << basis[i-1].p << " " << relations[i].count << endl;
	  else
	    cout << endl;
	}
      }
    }
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << " begin rref size " << relations.size() << "x" << l32 << " K " << 0.004*relations.size()*C32 << ", " << count0 << " null lines, " << count1 << " 1-line" << endl;
#if 0 // debug only
    for (int i=0;i<relations.size();++i){
      cout << i << ", p=";
      if (i==0) 
	cout << "-1";
      else {
	if (i<=bs)
	  cout << basis[i-1].p << " " << relations[i].count << endl;
	else
	  cout << endl;
      }
    }
#endif
    sort(relations.begin(),relations.end()); // put 0 lines at end, otherwise asc. sort
#else // RREF_SORT
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << " begin rref size " << relations.size() << "x" << l32 << " K " << 0.004*relations.size()*C32 << endl;
    reverse(relations.begin(),relations.end());
#endif // RREF_SORT
    // rref(relations,relations.size(),C32,0);
    rref(relations,int(relations.size()),C32,1);
    rref(relations,int(relations.size()),C32,2);
    if (debug_infolevel)
      *logptr(contextptr) << CLOCK() << " end rref" << endl;
    // printbool(*logptr(contextptr),relations);
    // move pivots on the diagonal by inserting 0 lines
    vector< unsigned * > relations2(l32);
    i=0;
    int j=0,rs=int(relations.size());
    for (;i<rs && j<l32;++j){
      if (relations[i].tab[j/32] & (1 << j%32)){
	swap(relations2[j],relations[i].tab);
	++i;
      }
    }
    // printbool(*logptr(contextptr),relations2);
    // for each element of the kernel compute x and y / x^2=y^2[N] 
    // then gcd(x-y,n_orig)
    for (i=0;i<l32;++i){
      if (relations2[i] && (relations2[i][i/32] & (1<<i%32)))
	continue;
      // using column i of relations2 which is in the kernel, build x and y
      // for x, we can compute the product of the axbmodn mod N
      // for y, compute the product of sqrta mod N and multiply later by ax^2+bx+c factored part
      // since (a*x+b)^2=a*(a*x^2+2*b*x+c) mod N
      gen x=1,y=1,cur;
      mpz_set_ui(zx,1);
      mpz_set_ui(zy,1);
      vector<short_t> p(bs), add_p(additional_primes.size());
      for (int j=0;j<l32;++j){
	if (j<int(axbmodn.size()) && (i==j || (relations2[j] && (relations2[j][i/32] & (1<<(i%32)))))){
	  if (axbmodn[j].aindex>=sqrtavals.size() || axbmodn[j].bindex>=bvals.size())
	    return false; // check added because ifactor(nextprime(alog10(17))*nextprime(alog10(19))); fails on Prime (and unable to do parallel debug in giac)
	  update_xy(axbmodn[j],zx,zy,p,add_p,N,basis,additional_primes,sqrtavals,bvals,puissancestab,zq,zr,alloc1,alloc2,alloc3,alloc4,alloc5);
#ifdef ADDITIONAL_PRIMES_HASHMAP
	  unsigned u=largep(axbmodn[j],puissancestab);
	  if (u)
	    update_xy(additional_primes_map[u],zx,zy,p,add_p,N,basis,additional_primes,sqrtavals,bvals,puissancestab,zq,zr,alloc1,alloc2,alloc3,alloc4,alloc5);
#endif
	} // end if (j<axbmodn.size() ...) 
      } // end for unsigned j=0; j<l32
      for (int i=0;i<bs;++i){
	if (p[i] % 2)
	  *logptr(contextptr) << gettext("error, odd exponent for prime ") << basis[i].p << endl;
	if (p[i]){
#if 1
	  mpz_set_ui(alloc1,basis[i].p);
	  for (int j=0;j<p[i]/2;++j)
	    mpz_mul(zy,zy,alloc1);
#ifdef USE_GMP_REPLACEMENTS
	  mp_grow(&alloc1,zy.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = zy.used +2 ;
	  mpz_set(alloc2,zy);
	  mpz_set(alloc3,*N._ZINTptr);
	  // mpz_set_si(alloc4,0);
	  // mpz_set_si(alloc5,0);
	  alloc_mp_div(&zy,N._ZINTptr,&zq,&zr,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
	  mpz_tdiv_r(zr,zy,*N._ZINTptr);
#endif
	  mpz_set(zy,zr);
#else
	  y=y*pow(gen(basis[i].p),int(p[i]/2));
	  y=smod(y,N);
#endif
	}
      }
      for (unsigned i=0;i<additional_primes.size();++i){
	if (add_p[i] % 2)
	  *logptr(contextptr) << gettext("error") << i << endl;
	if (add_p[i]){
#if 1
	  mpz_set_ui(alloc1,additional_primes[i]);
	  for (int j=0;j<add_p[i]/2;++j)
	    mpz_mul(zy,zy,alloc1);
#ifdef USE_GMP_REPLACEMENTS
	  mp_grow(&alloc1,zy.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = zy.used +2 ;
	  mpz_set(alloc2,zy);
	  mpz_set(alloc3,*N._ZINTptr);
	  // mpz_set_si(alloc4,0);
	  // mpz_set_si(alloc5,0);
	  alloc_mp_div(&zy,N._ZINTptr,&zq,&zr,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
#else
	  mpz_tdiv_r(zr,zy,*N._ZINTptr);
#endif
	  mpz_set(zy,zr);
#else
	  y=y*pow(gen(additional_primes[i]),int(add_p[i]/2));
	  y=smod(y,N);
#endif
	}
      }
#if 1
      y=zy;
      x=zx;
#endif
      cur=gcd(x-y,n_orig);
      if (debug_infolevel>6)
	*logptr(contextptr) << CLOCK() << gettext("checking gcd") << cur << " " << N << endl;
      if ( (cur.type==_INT_ && cur.val>7) || 
	   (cur.type==_ZINT && is_strictly_greater(n_orig,cur,contextptr))){
	pn=cur;
	mpz_clear(zx); mpz_clear(zy); mpz_clear(zq); mpz_clear(zr);
	mpz_clear(alloc1); mpz_clear(alloc2); mpz_clear(alloc3); mpz_clear(alloc4); mpz_clear(alloc5);
	delete [] puissancestab;
	delete [] tab;
	return true;
      }
    }
    mpz_clear(zx); mpz_clear(zy); mpz_clear(zq); mpz_clear(zr);
    mpz_clear(alloc1); mpz_clear(alloc2); mpz_clear(alloc3); mpz_clear(alloc4); mpz_clear(alloc5);
    delete [] puissancestab;
    delete [] tab;
    return false;
  }

  // Pollard-rho algorithm
  const int POLLARD_GCD=64;
#ifdef GIAC_MPQS 
#if defined(RTOS_THREADX) // !defined(BESTA_OS)
  const int POLLARD_MAXITER=3000;
#else
  const int POLLARD_MAXITER=15000;
#endif
#else
  const int POLLARD_MAXITER=15000;
#endif  

  static gen pollard(gen n, gen k,GIAC_CONTEXT){
    k.uncoerce();
    n.uncoerce();
    int maxiter=POLLARD_MAXITER;
    double nd=evalf_double(n,1,contextptr)._DOUBLE_val;
#if defined(RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
    int nd1=int(2000*(std::log10(nd)-34));
#else
    int nd1=int(1500*std::pow(16.,(std::log10(nd)-40)/10));
#endif
    if (nd1>maxiter)
      maxiter=nd1;
    int m,m1,a,a1,j;
    m1=m=2;
    a1=a=1;
    int c=0;
    mpz_t g,x,x1,x2,x2k,y,y1,p,q,tmpq,alloc1,alloc2,alloc3,alloc4,alloc5;
    mpz_init_set_si(g,1); // ? mp_init_size to specify size
    mpz_init_set_si(x,2);
    mpz_init_set_si(x1,2);
    mpz_init_set_si(y,2);
    mpz_init(y1);
    mpz_init(x2);
    mpz_init(x2k);
    mpz_init_set_si(p,1);
    mpz_init(q);
    mpz_init(tmpq);
    mpz_init(alloc1);
    mpz_init(alloc2);
    mpz_init(alloc3);
    mpz_init(alloc4);
    mpz_init(alloc5);
    while (!ctrl_c && !interrupted && mpz_cmp_si(g,1)==0) {
#ifdef TIMEOUT
      control_c();
#endif
      a=2*a+1;//a=2^(e+1)-1=2*l(m)-1 
      while (!ctrl_c && !interrupted && mpz_cmp_si(g,1)==0 && a>m) { // ok
#ifdef TIMEOUT
	control_c();
#endif
	// x=f(x,k,n,q);
#ifdef USE_GMP_REPLACEMENTS
	mp_sqr(&x,&x2);
	mpz_add(x2k,x2,*k._ZINTptr);
	if (mpz_cmp(x2k,*n._ZINTptr)>0){
	  mp_grow(&alloc1,x2k.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = x2k.used +2 ;
	  mpz_set(alloc2,x2k);
	  mpz_set(alloc3,*n._ZINTptr);
	  // mpz_set_si(alloc4,0);
	  // mpz_set_si(alloc5,0);
	  alloc_mp_div(&x2k,n._ZINTptr,&tmpq,&x,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
	}
	else
	  mpz_set(x,x2k);
#else 
	mpz_mul(x2,x,x);
	mpz_add(x2k,x2,*k._ZINTptr);
	mpz_tdiv_r(x,x2k,*n._ZINTptr);
#endif
	m += 1;
	if (debug_infolevel && ((m % 
#if defined(RTOS_THREADX) || defined(BESTA_OS) || defined NSPIRE
				 (1<<10)
#else
				 (1<<18)
#endif
				 )==0))
	  *logptr(contextptr) << CLOCK() << gettext(" Pollard-rho try ") << m << endl;
	if (m > maxiter ){
	  if (debug_infolevel)	  
	    *logptr(contextptr) << CLOCK() << gettext(" Pollard-rho failure, ntries ") << m << endl;
	  mpz_clear(alloc5);
	  mpz_clear(alloc4);
	  mpz_clear(alloc3);
	  mpz_clear(alloc2);
	  mpz_clear(alloc1);
	  mpz_clear(tmpq);
	  mpz_clear(x);
	  mpz_clear(x1);
	  mpz_clear(x2);
	  mpz_clear(x2k);
	  mpz_clear(y);
	  mpz_clear(y1);
	  mpz_clear(p);
	  mpz_clear(q);
	  return -1;
	}
	// p=irem(p*(x1-x),n,q);
	mpz_sub(q,x1,x);
	mpz_mul(x2,p,q);
#if 0 // def USE_GMP_REPLACEMENTS
	if (mpz_cmp(x2,*n._ZINTptr)>0){
	  mp_grow(&alloc1,x2.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = x2.used +2 ;
	  mpz_set(alloc2,x2);
	  mpz_set(alloc3,*n._ZINTptr);
	  // mpz_set_si(alloc4,0);
	  // mpz_set_si(alloc5,0);
	  alloc_mp_div(&x2,n._ZINTptr,&tmpq,&p,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
	}
	else 
	  mpz_set(p,x2);
#else
	mpz_tdiv_r(p,x2,*n._ZINTptr);
#endif
	c += 1;
	if (c==POLLARD_GCD) {
	  // g=gcd(abs(p,context0),n); 
	  mpz_abs(q,p);
	  my_mpz_gcd(g,q,*n._ZINTptr);
	  if (mpz_cmp_si(g,1)==0) {
	    mpz_set(y,x); // y=x;
	    mpz_set(y1,x1); // y1=x1;
	    mpz_set_si(p,1); // p=1;
	    a1=a;
	    m1=m;
	    c=0;
	  }
	}
      }//m=a=2^e-1=l(m)
      if (mpz_cmp_si(g,1)==0) {
	mpz_set(x1,x); // x1=x;//x1=x_m=x_l(m)-1
	j=3*(a+1)/2; // j=3*iquo(a+1,2);
	for (long i=m+1;i<=j;i++){
	  // x=f(x,k,n,q);
	  mpz_mul(x2,x,x);
	  mpz_add(x2k,x2,*k._ZINTptr);
#if 0 // def USE_GMP_REPLACEMENTS
	  if (mpz_cmp(x2k,*n._ZINTptr)>0){
	    mp_grow(&alloc1,x2k.used+2);
	    mpz_set_ui(alloc1,0);
	    alloc1.used = x2k.used +2 ;
	    mpz_set(alloc2,x2k);
	    mpz_set(alloc3,*n._ZINTptr);
	    // mpz_set_si(alloc4,0);
	    // mpz_set_si(alloc5,0);
	    alloc_mp_div(&x2k,n._ZINTptr,&tmpq,&x,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
	  }
	  else 
	    mpz_set(x,x2);
#else
	  mpz_tdiv_r(x,x2k,*n._ZINTptr);
#endif
	}
	m=j;
      }
    }
    //g<>1 ds le paquet de POLLARD_GCD
    if (debug_infolevel>5)
      CERR << CLOCK() << " Pollard-rho nloops " << m << endl;
    mpz_set(x,y); // x=y;
    mpz_set(x1,y1); // x1=y1;
    mpz_set_si(g,1); // g=1;
    a=(a1-1)/2; // a=iquo(a1-1,2);
    m=m1;
    while (!ctrl_c && !interrupted && mpz_cmp_si(g,1)==0) {
#ifdef TIMEOUT
      control_c();
#endif
      a=2*a+1;
      while (!ctrl_c && !interrupted && mpz_cmp_si(g,1)==0 && a>m) { // ok
#ifdef TIMEOUT
	control_c();
#endif
	// x=f(x,k,n,q);
	mpz_mul(x2,x,x);
	mpz_add(x2k,x2,*k._ZINTptr);
#if 0 // def USE_GMP_REPLACEMENTS
	if (mpz_cmp(x2k,*n._ZINTptr)>0){
	  mp_grow(&alloc1,x2k.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = x2k.used +2 ;
	  mpz_set(alloc2,x2k);
	  mpz_set(alloc3,*n._ZINTptr);
	  alloc_mp_div(&x2k,n._ZINTptr,&tmpq,&x,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
	}
	else
	  mpz_set(x,x2k);	  
#else
	mpz_tdiv_r(x,x2k,*n._ZINTptr);
#endif
	m += 1;
	if (m > maxiter ){
	  mpz_clear(alloc5);
	  mpz_clear(alloc4);
	  mpz_clear(alloc3);
	  mpz_clear(alloc2);
	  mpz_clear(alloc1);
	  mpz_clear(tmpq);
	  mpz_clear(x);
	  mpz_clear(x1);
	  mpz_clear(x2);
	  mpz_clear(x2k);
	  mpz_clear(y);
	  mpz_clear(y1);
	  mpz_clear(p);
	  mpz_clear(q);
	  return -1;
	}
	// p=irem(x1-x,n,q);
	mpz_sub(q,x1,x);
#if 0 // def USE_GMP_REPLACEMENTS
	if (mpz_cmp(q,*n._ZINTptr)>0){
	  mp_grow(&alloc1,q.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = q.used +2 ;
	  mpz_set(alloc2,q);
	  mpz_set(alloc3,*n._ZINTptr);
	  // mpz_set_si(alloc4,0);
	  // mpz_set_si(alloc5,0);
	  alloc_mp_div(&q,n._ZINTptr,&tmpq,&p,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
	}
	else 
	  mpz_set(p,q);
#else
	mpz_tdiv_r(p,q,*n._ZINTptr);
#endif
	// g=gcd(abs(p,context0),n);  // ok
	mpz_abs(q,p);
	my_mpz_gcd(g,q,*n._ZINTptr);
      }
      if (mpz_cmp_si(g,1)==0) {
	mpz_set(x1,x); // x1=x;
	j=3*(a+1)/2; // j=3*iquo(a+1,2);
	for (long i=m+1;j>=i;i++){
	  // x=f(x,k,n,q);
	  mpz_mul(x2,x,x);
	  mpz_add(x2k,x2,*k._ZINTptr);
	  mpz_tdiv_qr(tmpq,x,x2k,*n._ZINTptr);
	}
	m=j;
      }
    }
    mpz_clear(alloc5);
    mpz_clear(alloc4);
    mpz_clear(alloc3);
    mpz_clear(alloc2);
    mpz_clear(alloc1);
    mpz_clear(tmpq);
    mpz_clear(x);
    mpz_clear(x1);
    mpz_clear(x2);
    mpz_clear(x2k);
    mpz_clear(y);
    mpz_clear(y1);
    mpz_clear(p);
    mpz_clear(q);
#ifdef TIMEOUT
    control_c();
#endif
    if (ctrl_c || interrupted){
      mpz_clear(g);
      return 0;
    }
    if (mpz_cmp(g,*n._ZINTptr)==0) {
      if (k==1) {
	mpz_clear(g);
	return(pollard(n,-1,contextptr)); 
      }
      else {
	if (k*k==1){
	  mpz_clear(g);
	  return(pollard(n,3,contextptr));
	}
	else {
	  if (is_greater(k,50,contextptr)){
#if 1
	    return -1;
#else
	    ref_mpz_t * ptr=new ref_mpz_t;
	    mpz_init_set(ptr->z,g);
	    mpz_clear(g);
	    return ptr;
#endif
	  }
	  else {
	    mpz_clear(g);
	    return(pollard(n,k+2,contextptr));
	  }
	} 
      }
    } 
    ref_mpz_t * ptr=new ref_mpz_t;
    mpz_init_set(ptr->z,g);
    mpz_clear(g);
    return ptr;
  }

  // const short int giac_primes[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997};

  bool eratosthene(double n,vector<bool> * & v){
    static vector<bool> erato;
    v=&erato;
    if (n+1>erato.size()){
      unsigned N=int(n);
      ++N;
#if defined BESTA_OS 
      if (N>2e6)
	return false;
#else
      if (N>2e9)
	return false;
#endif
      N = (N*11)/10;
      erato=vector<bool>(N+1,true); 
      // insure that we won't recompute all again from start for ithprime(i+1)
      for (unsigned p=2;;++p){
	while (!erato[p]) // find next prime
	  ++p;
	if (p*p>N) // finished
	  return true;
	for (unsigned i=2*p;i<=N;i+=p) 
	  erato[i]=false; // remove p multiples
      }
    }
    return true;
  }

  bool eratosthene2(double n,vector<bool> * & v){
    static vector<bool> erato;
    v=&erato;
    if (n/2>=erato.size()){
      unsigned N=int(n);
      ++N;
#if defined BESTA_OS 
      if (N>4e6)
	return false;
#else
      if (N>2e9)
	return false;
#endif
      // 11/20 insures that we won't recompute all again from start for ithprime(i+1)
      N = (N*11)/20; // keep only odd numbers in sieve
      erato=vector<bool>(N+1,true); //erato[i] stands for 2*i+1 <-> n corresponds to erato[n/2]
      for (unsigned p=3;;p+=2){
	while (!erato[p/2]) // find next prime (first one is p==3)
	  p+=2;
	if (p*p>2*N+1) // finished
	  return true;
	// p is prime, set p*p, (p+2)*p, etc. to be non prime
	for (unsigned i=(p*p)/2;i<=N;i+=p) 
	  erato[i]=false; // remove p multiples
      }
    }
    return true;
  }

  // ithprime(n) is approx invli(n)+invli(sqrt(n))/4 where invli is reciproc.
  // of Li(x)=Ei(ln(x))
  // For fast code, cf. https://github.com/kimwalisch/primecount
  static const char _ithprime_s []="ithprime";
  static symbolic symb_ithprime(const gen & args){
    return symbolic(at_ithprime,args);
  }
  static gen ithprime(const gen & g_,GIAC_CONTEXT){
    gen g(g_);
    if (!is_integral(g))
      return gentypeerr(contextptr);
    if (g.type!=_INT_)
      return gensizeerr(contextptr); // symb_ithprime(g);
    int i=g.val;
    if (i<0)
      return gensizeerr(contextptr);
    if (i==0)
      return 1;
    if (i<=int(sizeof(giac_primes)/sizeof(short int)))
      return giac_primes[i-1];
    vector<bool> * vptr=0;
#if 1
    if (!eratosthene2(i*std::log(double(i))*1.1,vptr))
      return gensizeerr(contextptr);
    unsigned count=2;
    unsigned s=unsigned(vptr->size());
    for (unsigned k=2;k<s;++k){
      if ((*vptr)[k]){
	++count;
	if (i==count)
	  return int(2*k+1);
      }
    }
    return undef;
#else
    if (!eratosthene(i*std::log(double(i))*1.1,vptr))
      return gensizeerr(contextptr);
    unsigned count=2;
    unsigned s=vptr->size();
    for (unsigned k=4;k<s;++k){
      if ((*vptr)[k]){
	++count;
	if (i==count)
	  return int(k);
      }
    }
    return undef;
#endif
  }
  gen _ithprime(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_ithprime,contextptr);
    return ithprime(args,contextptr);
  }
  static define_unary_function_eval (__ithprime,&giac::_ithprime,_ithprime_s);
  define_unary_function_ptr5( at_ithprime ,alias_at_ithprime,&__ithprime,0,true);

  static const char _nprimes_s []="nprimes";
  static gen nprimes(const gen & g_,GIAC_CONTEXT){
    gen g(g_);
    if (!is_integral(g))
      return gentypeerr(contextptr);
    if (g.type!=_INT_)
      return gensizeerr(contextptr); // symb_ithprime(g);
    int i=g.val;
    if (i<0)
      return gensizeerr(contextptr);
    if (i<2)
      return 0;
    vector<bool> * vptr=0;
    if (!eratosthene2(i+2,vptr))
      return gensizeerr(contextptr);
    unsigned count=1; // 2 is prime, then count odd primes
    i=(i-1)/2;
    for (int k=1;k<=i;++k){
      if ((*vptr)[k])
	++count;
    }
    return int(count);
  }
  gen _nprimes(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_nprimes,contextptr);
    return nprimes(args,contextptr);
  }
  static define_unary_function_eval (__nprimes,&giac::_nprimes,_nprimes_s);
  define_unary_function_ptr5( at_nprimes ,alias_at_nprimes,&__nprimes,0,true);

  bool is_divisible_by(const gen & n,unsigned long a){
    if (n.type==_ZINT){
#ifdef USE_GMP_REPLACEMENTS
      mp_digit c;
      mp_mod_d(n._ZINTptr, a, &c);
      return c==0;
#else
      return mpz_divisible_ui_p(*n._ZINTptr,a);
#endif
    }
    return n.val%a==0;
  }

  // find trivial factors of n, 
  // if add_last is true the remainder is put in the vecteur,
  // otherwise n contains the remainder
  vecteur pfacprem(gen & n,bool add_last,GIAC_CONTEXT){
    gen a;
    gen q;
    int p,i,prime;
    vecteur v(2);
    vecteur u;
    if (is_zero(n))
      return u;
    if (n.type==_ZINT){
      ref_mpz_t * cur = new ref_mpz_t;
      mpz_t div,q,r,alloc1,alloc2,alloc3,alloc4,alloc5;
      mpz_set(cur->z,*n._ZINTptr);
      mpz_init_set(q,*n._ZINTptr);
      mpz_init(r);
      mpz_init(div);
      mpz_init(alloc1);
      mpz_init(alloc2);
      mpz_init(alloc3);
      mpz_init(alloc4);
      mpz_init(alloc5);
      for (i=0;i<int(sizeof(giac_primes)/sizeof(short int));++i){
	if (mpz_cmp_si(cur->z,1)==0) 
	  break;
	prime=giac_primes[i];
	mpz_set_ui(div,prime);
#ifdef USE_GMP_REPLACEMENTS
	for (p=0;;p++){
	  mp_grow(&alloc1,cur->z.used+2);
	  mpz_set_ui(alloc1,0);
	  alloc1.used = cur->z.used +2 ;
	  mpz_set(alloc2,cur->z);
	  mpz_set(alloc3,div);
	  alloc_mp_div(&cur->z,&div,&q,&r,&alloc1,&alloc2,&alloc3,&alloc4,&alloc5);
	  // mpz_tdiv_qr(q,r,cur->z,div);
	  if (mpz_cmp_si(r,0))
	    break;
	  mp_exch(&cur->z,&q);
	}
	// *logptr(contextptr) << "Factor " << prime << " " << p << endl;
	if (p){
	  u.push_back(prime);
	  u.push_back(p);
	}
#else
	if (mpz_divisible_ui_p(cur->z,prime)){
	  mpz_set_ui(div,prime);
	  for (p=0;;p++){
	    mpz_tdiv_qr(q,r,cur->z,div);
	    if (mpz_cmp_si(r,0))
	      break;
	    mpz_swap(cur->z,q);
	  }
	  // *logptr(contextptr) << "Factor " << prime << " " << p << endl;
	  u.push_back(prime);
	  u.push_back(p);
	}
#endif
      } // end for on smal primes
      mpz_clear(alloc5);
      mpz_clear(alloc4);
      mpz_clear(alloc3);
      mpz_clear(alloc2);
      mpz_clear(alloc1);
      mpz_clear(div); mpz_clear(r); mpz_clear(q);
      n=cur;
    }
    else {
      for (i=0;i<int(sizeof(giac_primes)/sizeof(short int));++i){
	if (n==1) 
	  break;
	a.val=giac_primes[i];
	p=0;
	while (is_divisible_by(n,a.val)){ // while (irem(n,a,q)==0){
	  n=iquo(n,a); 
	  p=p+1;
	}
	if (p!=0){
	  // *logptr(contextptr) << "Factor " << a << " " << p << endl;
	  u.push_back(a);
	  u.push_back(p);
	}
      }
    }
    if (add_last && i==1229 && !is_one(n)){
      // hack: check if n is a perfect square
      double nf=evalf_double(n,1,contextptr)._DOUBLE_val;
      nf=std::sqrt(nf);
      gen n2=_round(nf,contextptr);
      if (n2*n2==n){
	u.push_back(n2);
	u.push_back(2);	
      }
      else {
	u.push_back(n);
	u.push_back(1);
      }
      n=1;
    }
    //v[0]=n;
    //v[1]=u;
    
    return(u);
  }

#ifdef USE_GMP_REPLACEMENTS
  static gen inpollardsieve(const gen &a,gen k,bool & do_pollard,GIAC_CONTEXT){
    gen b=do_pollard?pollard(a,k,contextptr):-1;
#ifdef TIMEOUT
    control_c();
#endif
#ifdef GIAC_MPQS
    if (b==-1 && !ctrl_c && !interrupted){ 
      do_pollard=false;
      if (msieve(a,b,contextptr)) return b; else return -1; }
#endif
    return b;
  }
  static gen pollardsieve(const gen &a,gen k,bool & do_pollard,GIAC_CONTEXT){
#if defined( GIAC_HAS_STO_38) || defined(EMCC) || defined NSPIRE
    int debug_infolevel_=debug_infolevel;
#if defined RTOS_THREADX || defined NSPIRE
    debug_infolevel=2;
    if (do_pollard)
      *logptr(contextptr) << gettext("Pollard-rho on ") << a << endl; 
#else
    debug_infolevel=0;
#endif
#endif
    gen res=inpollardsieve(a,k,do_pollard,contextptr);
#if defined( GIAC_HAS_STO_38) || defined(EMCC) || defined NSPIRE
    debug_infolevel=debug_infolevel_;
#ifdef GIAC_HAS_STO_38
    Calc->Terminal.MakeUnvisible();
#endif
#endif
    return res;
  }
#else // USE_GMP_REPLACEMENTS
  static gen pollardsieve(const gen &a,gen k,bool & do_pollard,GIAC_CONTEXT){
    gen b=do_pollard?pollard(a,k,contextptr):-1;
#ifdef TIMEOUT
    control_c();
#endif
#ifdef GIAC_MPQS
    if (b==-1 && !ctrl_c && !interrupted){ 
      do_pollard=false;
      if (msieve(a,b,contextptr)) return b; else return -1; }
#endif
    if (b==-1)
      b=a;
    return b;
  }
#endif // USE_GMP_REPLACEMENTS

  static gen ifactor2(const gen & n,vecteur & v,bool & do_pollard,GIAC_CONTEXT){
    if (is_greater(giac_last_prime*giac_last_prime,n,contextptr) || is_probab_prime_p(n) ){
      v.push_back(n);
      return 1;
    }
    // Check for power of integer: arg must be > 1e4, n*ln(arg)=d => n<d/ln(1e4)
    double d=evalf_double(n,1,contextptr)._DOUBLE_val;
    int maxpow=int(std::ceil(std::log(d)/std::log(1e4)));
    for (int i=2;i<=maxpow;++i){
      if ( (i>2 && i%2==0) ||
	   (i>3 && i%3==0) ||
	   (i>5 && i%5==0) ||
	   (i>7 && i%7==0) )
	continue;
      gen u;
      if (i==2)
	u=isqrt(n);
      else {
	double x=std::pow(d,1./i);
	u=longlong(x);
      }
      if (pow(u,i,contextptr)==n){
	vecteur w;
	do_pollard=true;
	ifactor2(u,w,do_pollard,contextptr);
	for (int j=0;j<i;j++)
	  v=mergevecteur(v,w);
	return v;
      }
    }
    gen a=pollardsieve(n,1,do_pollard,contextptr);
    if (a==-1)
      return a;
#ifdef TIMEOUT
    control_c();
#endif
    if (ctrl_c || interrupted)
      return gensizeerr("Interrupted");
    gen ba=n/a;
    if (a!=n)
      a=ifactor2(a,v,do_pollard,contextptr);
    else {
      a=1;
      v.push_back(n);
    }
    if (is_strictly_greater(ba,1,contextptr))
      a=ifactor2(ba,v,do_pollard,contextptr);
    return a;
  }

  static vecteur facprem(gen & n,GIAC_CONTEXT){
    vecteur v;    
    if (n==1) { return v; }
    if ( (n.type==_INT_ && n.val<giac_last_prime*giac_last_prime) || is_probab_prime_p(n)) {
      v.push_back(n);
      n=1;
      return v;
    }
    if (debug_infolevel>5)
      CERR << "Pollard begin " << CLOCK() << endl;
    bool do_pollard=true;
    gen a=ifactor2(n,v,do_pollard,contextptr);
    if (a==-1)
      return makevecteur(gensizeerr(gettext("Quadratic sieve failure, perhaps number too large")));
    if (is_zero(a))
      return makevecteur(gensizeerr(gettext("Stopped by user interruption")));
    n=1;
    return v;
  }

  void mergeifactors(const vecteur & f,const vecteur &g,vecteur & h){
    h=f;
    for (unsigned i=0;i<g.size();i+=2){
      unsigned j=0;
      for (;j<f.size();j+=2){
	if (f[j]==g[i])
	  break;
      }
      if (j<f.size())
	h[j+1] += g[i+1];
      else {
	h.push_back(g[i]);
	h.push_back(g[i+1]);
      }
    }
  }

  static vecteur giac_ifactors(const gen & n0,GIAC_CONTEXT){
    if (!is_integer(n0) || is_zero(n0))
      return vecteur(1,gensizeerr(gettext("ifactors")));
    if (is_one(n0))
      return vecteur(0);
    gen n(n0);
    vecteur f;
    vecteur g;
    vecteur u;
    // First find if |n-k^d|<=1 for d = 2, 3, 5 or 7
    double nd=evalf_double(n,1,contextptr)._DOUBLE_val;
    double nd2=std::floor(std::sqrt(nd)+.5);
    if (std::abs(1-nd2*nd2/nd)<1e-10){
      gen n2=isqrt(n+1);
      if (n==n2*n2){
	f=ifactors(n2,contextptr);
	iterateur it=f.begin(),itend=f.end();
	for (;it!=itend;++it){
	  ++it;
	  *it = 2 * *it;
	}
	return f;
      }
      if (n==n2*n2-1){
	f=ifactors(n2-1,contextptr);
	g=ifactors(n2+1,contextptr);
	mergeifactors(f,g,u);
	return u;
      }
    }
    for (int k=3;;){
      nd2=std::floor(std::pow(nd,1./k)+.5);
      if (std::abs(1-std::pow(nd2,k)/nd)<1e-10){
	gen n2=_floor(nd2,contextptr),nf=n2*n2;
	for (int j=2;j<k;j++)
	  nf=nf*n2;
	if (n==nf){
	  f=ifactors(n2,contextptr);
	  iterateur it=f.begin(),itend=f.end();
	  for (;it!=itend;++it){
	    ++it;
	    *it = k * *it;
	  }
	  return f;
	}
	if (n==nf-1){ // n2^k-1
	  f=ifactors(n2-1,contextptr);
	  g=ifactors(n/(n2-1),contextptr);
	  mergeifactors(f,g,u);
	  return u;
	}
	if (n==nf+1){ // n2^k+1
	  f=ifactors(n2+1,contextptr);
	  g=ifactors(n/(n2+1),contextptr);
	  mergeifactors(f,g,u);
	  return u;
	}
      }
      if (k==11) break;
      if (k==7) break; // k=11;
      if (k==5) k=7;
      if (k==3) k=5;
    }
    //f=pfacprem(n,false,contextptr);
    //cout<<n<<" "<<f<<endl;
    while (n!=1) {
      g=facprem(n,contextptr);
      if (is_undef(g))
	return g;
      islesscomplexthanf_sort(g.begin(),g.end());
      gen last=0; int p=0;
      for (unsigned i=0;i<g.size();++i){
	if (g[i]==last)
	  ++p;
	else {
	  if (last!=0){
	    u.push_back(last);
	    u.push_back(p);
	  }
	  last=g[i];
	  p=1;
	}
      }
      u.push_back(last);
      u.push_back(p);
    }   
    g=mergevecteur(f,u);
    return g;
  }

  static vecteur ifactors1(const gen & n0,GIAC_CONTEXT){
    if (is_greater(1e71,n0,contextptr))
      return giac_ifactors(n0,contextptr);
    if (n0.type==_VECT && !n0._VECTptr->empty())
      return giac_ifactors(n0._VECTptr->front(),contextptr);
#ifdef HAVE_LIBPARI
#ifdef __APPLE__
    return vecteur(1,gensizeerr(gettext("(Mac OS) Large number, you can try pari(); pari_factor(")+n0.print(contextptr)+")"));
#endif
    if (!is_integer(n0) || is_zero(n0))
      return vecteur(1,gensizeerr(gettext("ifactors")));
    if (is_one(n0))
      return vecteur(0);
    gen g(pari_ifactor(n0),contextptr); 
    if (g.type==_VECT){
      matrice m(mtran(*g._VECTptr));
      vecteur res;
      const_iterateur it=m.begin(),itend=m.end();
      for (;it!=itend;++it){
	if (it->type!=_VECT) return vecteur(1,gensizeerr(gettext("ifactor.cc/ifactors")));
	res.push_back(it->_VECTptr->front());
	res.push_back(it->_VECTptr->back());
      }
      return res;
    }
#endif // LIBPARI
    return giac_ifactors(n0,contextptr);
  }

  vecteur ifactors(const gen & n0,GIAC_CONTEXT){
    gen n(n0);
    vecteur f=pfacprem(n,false,contextptr);
    if (is_undef(f))
      return f;
    vecteur g=ifactors1(n,contextptr);
    if (is_undef(g))
      return g;
    return mergevecteur(f,g);
  }

  vecteur ifactors(const gen & r,const gen & i,const gen & ri,GIAC_CONTEXT){
    gen norm=r*r+i*i;
    gen reste(ri);
    const vecteur & facto = ifactors(norm,contextptr);
    if (is_undef(facto))
      return facto;
    int l=int(facto.size())/2;
    vecteur res;
    for (int i=0;i<l;++i){
      gen prime=facto[2*i];
      int mult=facto[2*i+1].val,multp=0;
      int n=smod(prime,4).val;
      if (n==2){
	res.push_back(1+cst_i);
	res.push_back(mult);
	reste=reste/pow(1+cst_i,mult,contextptr);
	continue;
      }
      if (n==-1){
	res.push_back(prime);
	res.push_back(mult/2);
	reste=reste/pow(prime,mult/2,contextptr);
	continue;
      }
      prime=pa2b2(prime,contextptr);
      prime=gen(prime[0],prime[1]);
      for (;mult>0;--mult,++multp){
	if (!is_zero(reste % prime))
	  break;
	reste=reste/prime;
      }
      if (multp){
	res.push_back(prime);
	res.push_back(multp);
      }
      if (mult){
	prime=conj(prime,contextptr);
	res.push_back(prime);
	res.push_back(mult);
	reste=reste/pow(prime,mult,contextptr);
      }
    }
    if (!is_one(reste)){
      res.insert(res.begin(),1);
      res.insert(res.begin(),reste);
    }
    return res;
  }

  gen ifactors(const gen & args,int maplemode,GIAC_CONTEXT){
    if ( (args.type==_INT_) || (args.type==_ZINT)){
      if (is_zero(args)){
	if (maplemode==1)
	  return makevecteur(args,vecteur(0));
	else
	  return makevecteur(args);
      }
      vecteur v(ifactors(abs(args,contextptr),contextptr)); // ok
      if (!v.empty() && is_undef(v.front()))
	return v.front();
      if (maplemode!=1){
	if (is_positive(args,context0))
	  return v;
	return mergevecteur(makevecteur(minus_one,plus_one),v);
      }
      vecteur res;
      const_iterateur it=v.begin(),itend=v.end();
      for (;it!=itend;it+=2){
	res.push_back(makevecteur(*it,*(it+1)));
      }
      if (is_positive(args,context0))
	return makevecteur(plus_one,res);
      else
	return makevecteur(minus_one,res);	
    }
    if (args.type==_CPLX && is_integer(*args._CPLXptr) && is_integer(*(args._CPLXptr+1)))
      return ifactors(*args._CPLXptr,*(args._CPLXptr+1),args,contextptr);
    return gentypeerr(gettext("ifactors"));
  }

  gen _ifactors(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_ifactors,contextptr);
    gen g(args);
    if (!is_integral(g))
      return gensizeerr(contextptr);
    if (calc_mode(contextptr)==1){ // ggb returns factors repeted instead of multiplicites
      vecteur res;
      gen in=ifactors(g,0,contextptr);
      if (in.type==_VECT){
	for (unsigned i=0;i<in._VECTptr->size();i+=2){
	  gen f=in[i],m=in[i+1];
	  if (m.type==_INT_){
	    for (int j=0;j<m.val;++j)
	      res.push_back(f);
	  }
	}
	return res;
      }
    }
    return ifactors(g,0,contextptr);
  }
  static const char _ifactors_s []="ifactors";
  static define_unary_function_eval (__ifactors,&giac::_ifactors,_ifactors_s);
  define_unary_function_ptr5( at_ifactors ,alias_at_ifactors,&__ifactors,0,true);

  static const char _facteurs_premiers_s []="facteurs_premiers";
  static define_unary_function_eval (__facteurs_premiers,&giac::_ifactors,_facteurs_premiers_s);
  define_unary_function_ptr5( at_facteurs_premiers ,alias_at_facteurs_premiers,&__facteurs_premiers,0,true);

  static const char _maple_ifactors_s []="maple_ifactors";
  gen _maple_ifactors(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_maple_ifactors,contextptr);
    return ifactors(args,1,contextptr);
  }
  static define_unary_function_eval (__maple_ifactors,&giac::_maple_ifactors,_maple_ifactors_s);
  define_unary_function_ptr5( at_maple_ifactors ,alias_at_maple_ifactors,&__maple_ifactors,0,true);

  static vecteur in_factors(const gen & gf,GIAC_CONTEXT){
    if (gf.type!=_SYMB)
      return makevecteur(gf,plus_one);
    unary_function_ptr & u=gf._SYMBptr->sommet;
    if (u==at_inv){
      vecteur v=in_factors(gf._SYMBptr->feuille,contextptr);
      iterateur it=v.begin(),itend=v.end();
      for (;it!=itend;it+=2)
	*(it+1)=-*(it+1);
      return v;
    }
    if (u==at_neg){
      vecteur v=in_factors(gf._SYMBptr->feuille,contextptr);
      v.push_back(minus_one);
      v.push_back(plus_one);
      return v;
    }
    if ( (u==at_pow) && (gf._SYMBptr->feuille._VECTptr->back().type==_INT_) ){
      vecteur v=in_factors(gf._SYMBptr->feuille._VECTptr->front(),contextptr);
      gen k=gf._SYMBptr->feuille._VECTptr->back();
      iterateur it=v.begin(),itend=v.end();
      for (;it!=itend;it+=2)
	*(it+1)=k* *(it+1);
      return v;
    }
    if (u!=at_prod)
      return makevecteur(gf,plus_one);
    vecteur res;
    const_iterateur it=gf._SYMBptr->feuille._VECTptr->begin(),itend=gf._SYMBptr->feuille._VECTptr->end();
    for (;it!=itend;++it){
      res=mergevecteur(res,in_factors(*it,contextptr));
    }
    return res;
  }
  static vecteur in_factors1(const vecteur & res,GIAC_CONTEXT){
    gen coeff(1);
    vecteur v;
    const_iterateur it=res.begin(),itend=res.end();
    for (;it!=itend;it+=2){
      if (lidnt(*it).empty())
	coeff=coeff*(pow(*it,*(it+1),contextptr));
      else
	v.push_back(makevecteur(*it,*(it+1)));
    }
    return makevecteur(coeff,v);
  }
  vecteur factors(const gen & g,const gen & x,GIAC_CONTEXT){
    gen gf=factor(g,x,false,contextptr);
    vecteur res=in_factors(gf,contextptr);
    if (xcas_mode(contextptr)!=1)
      return res;
    return in_factors1(res,contextptr);
  }
  static const char _factors_s []="factors";
  gen _factors(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT && args.subtype==_SEQ__VECT && args._VECTptr->size()==2){
      gen j=args._VECTptr->back();
      gen res=_factors(args._VECTptr->front()*j,contextptr);
      if (res.type==_VECT && xcas_mode(contextptr)!=1)
	res=in_factors1(*res._VECTptr,contextptr);
      if (res.type==_VECT && res._VECTptr->size()==2){
	res._VECTptr->front()=recursive_normal(res._VECTptr->front()/j,contextptr);
	if (xcas_mode(contextptr)!=1){
	  if (is_one(res._VECTptr->front()))
	    res=res._VECTptr->back();
	  else {
	    j=res._VECTptr->front();
	    res=res._VECTptr->back();
	    if (res.type==_VECT)
	      res=mergevecteur(makevecteur(j,1),*res._VECTptr);
	  }
	  vecteur v;
	  aplatir(*res._VECTptr,v,contextptr);
	  res=v;
	}
      }
      return res;
    }
    if (args.type==_VECT)
      return apply(args,_factors,contextptr);
    return factors(args,vx_var,contextptr);
  }
  static define_unary_function_eval (__factors,&giac::_factors,_factors_s);
  define_unary_function_ptr5( at_factors ,alias_at_factors,&__factors,0,true);

  static gen ifactors2ifactor(const vecteur & l,bool quote){
    int s;
    s=int(l.size());
    gen r;
    vecteur v(s/2);
    for (int j=0;j<s;j=j+2){
      if (!is_one(l[j+1]))
	v[j/2]=symbolic(at_pow,gen(makevecteur(l[j],l[j+1]),_SEQ__VECT));
      else
	v[j/2]=l[j];
    }
    if (v.size()==1){
#if defined(GIAC_HAS_STO_38) && defined(CAS38_DISABLED)
      return symb_quote(v.front());
#else
      if (quote)
	return symb_quote(v.front());
      return v.front();
#endif
    }
    r=symbolic(at_prod,gen(v,_SEQ__VECT));
#if defined(GIAC_HAS_STO_38) && defined(CAS38_DISABLED)
    r=symb_quote(r);
#endif
    if (quote)
      return symb_quote(r);
    return r;
  }
  gen ifactor(const gen & n,GIAC_CONTEXT){
    vecteur l;
    l=ifactors(n,contextptr);
    if (!l.empty() && is_undef(l.front())) return l.front();
    return ifactors2ifactor(l,calc_mode(contextptr)==1);
  }
  gen _ifactor(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_CPLX && is_integer(*args._CPLXptr) && is_integer(*(args._CPLXptr+1))){
      const vecteur & v=ifactors(*args._CPLXptr,*(args._CPLXptr+1),args,contextptr);
      return ifactors2ifactor(v,calc_mode(contextptr)==1);
    }
    gen n=args;
    if (n.type==_VECT && n._VECTptr->size()==1 && is_integer(n._VECTptr->front()))
      return ifactor(n,contextptr);
    if (n.type==_VECT)
      return apply(n,_ifactor,contextptr);
    if (!is_integral(n))
      return gensizeerr(contextptr);
    if (is_strictly_positive(-n,0))
      return -_ifactor(-n,contextptr);
    if (n.type==_INT_ && n.val<=3)
      return n;
    return ifactor(n,contextptr);
  }
  static const char _ifactor_s []="ifactor";
  static define_unary_function_eval (__ifactor,&_ifactor,_ifactor_s);
  define_unary_function_ptr5( at_ifactor ,alias_at_ifactor,&__ifactor,0,true);

  static const char _factoriser_entier_s []="factoriser_entier";
  static define_unary_function_eval (__factoriser_entier,&_ifactor,_factoriser_entier_s);
  define_unary_function_ptr5( at_factoriser_entier ,alias_at_factoriser_entier,&__factoriser_entier,0,true);

  static vecteur divis(const vecteur & l3,GIAC_CONTEXT){
    vecteur l1(1);
    gen d,e;
    int s=int(l3.size());
    gen taille=1;
    for (int k=0;k<s;k+=2){
      taille=taille*(l3[k+1]+1);
    }
    if (taille.type!=_INT_ || taille.val>LIST_SIZE_LIMIT)
      return vecteur(1,gendimerr(contextptr));
    l1.reserve(taille.val);
    l1[0]=1;//l3.push_back(..);
    for (int k=0;k<s;k=k+2) {
      vecteur l2;
      l2.reserve(taille.val);
      int s1;
      s1=int(l1.size());
      vecteur l4(s1);
      d=l3[k];
      e=l3[k+1];
      int ei;
      if (e.type==_INT_){
	ei=e.val;
      }
      else
	return vecteur(1,gensizeerr(gettext("Integer too large")));
      for (int j=1;j<=ei;j++){
	gen dj=pow(d,j);
	for (int l=0;l<s1;l++){ 
	  l4[l]=l1[l]*dj;
	}
	// l2=mergevecteur(l2,l4);
	iterateur it=l4.begin(),itend=l4.end();
	for (;it!=itend;++it)
	  l2.push_back(*it);
      }
      // l1=mergevecteur(l1,l2);
      iterateur it=l2.begin(),itend=l2.end();
      for (;it!=itend;++it)
	l1.push_back(*it);
    }
    return(l1); 
  }
  gen idivis(const gen & n,GIAC_CONTEXT){
    vecteur l3(ifactors(n,contextptr));
    if (!l3.empty() && is_undef(l3.front())) return l3.front();
    return divis(l3,contextptr);
  }
  gen _idivis(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_idivis,contextptr);
    gen n=args;
    if (is_zero(n) || (!is_integral(n) && !is_integer(n)) || n.type==_CPLX) 
      return gentypeerr(contextptr);
    return _sort(idivis(abs(n,contextptr),contextptr),contextptr);
  }
  static const char _idivis_s []="idivis";
  static define_unary_function_eval (__idivis,&_idivis,_idivis_s);
  define_unary_function_ptr5( at_idivis ,alias_at_idivis,&__idivis,0,true);

  gen _divis(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_divis,contextptr);
    return divis(factors(args,vx_var,contextptr),contextptr);
  }
  static const char _divis_s []="divis";
  static define_unary_function_eval (__divis,&_divis,_divis_s);
  define_unary_function_ptr5( at_divis ,alias_at_divis,&__divis,0,true);

  /*
  gen ichinreme(const vecteur & a,const vecteur & b){
    vecteur r(2);
    gen p=a[1],q=b[1],u,v,d;
    egcd(p,q,u,v,d);
    if (d!=1)  return gensizeerr(contextptr);
    r[0]=(u*p*b[0]+v*q*a[0]%p*q);
    r[1]=p*q;
    return(r);
  }
  gen _ichinreme(const gen & args){
  if ( args){
    if ( (args.type!=_VECT) || (args._VECTptr->size()!=4) )
      return gensizeerr(contextptr);
    vecteur a(2).type==_STRNG && args.subtype==-1{
    if ( (args.type!=_VECT) || (args._VECTptr->size()!=4) )
      return gensizeerr(contextptr);
    vecteur a(2))) return  args){
    if ( (args.type!=_VECT) || (args._VECTptr->size()!=4) )
      return gensizeerr(contextptr);
    vecteur a(2);
    if ( (args.type!=_VECT) || (args._VECTptr->size()!=4) )
      return gensizeerr(contextptr);
    vecteur a(2),b(2);
    a[0]=args[0];
    a[1]=args[1];
    b[0]=args[2];
    b[1]=args[3];
    //gen a=args[0],p=args[1], b=args[2],q=args[3];
    return ichinreme(a,b);
  }
  static const char _ichinreme_s []="ichinreme";
  static define_unary_function_eval (__ichinreme,&_ichinreme,_ichinreme_s);
  define_unary_function_ptr5( at_ichinreme ,alias_at_ichinreme,&__ichinreme,0,true); 
  */

  gen euler(const gen & e,GIAC_CONTEXT){
    if (e==0)
      return e;
    vecteur v(ifactors(e,contextptr));
    if (!v.empty() && is_undef(v.front())) return v.front();
    const_iterateur it=v.begin(),itend=v.end();
    for (gen res(plus_one);;){
      if (it==itend)
	return res;
      gen p=*it;
      ++it;
      int n=it->val;
      res = res * (p-plus_one)*pow(p,n-1);
      ++it;
    }
  }
  static const char _euler_s []="euler";
  gen _euler(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,_euler,contextptr);
    if ( is_integer(args) && is_positive(args,contextptr))
      return euler(args,contextptr);
    return gentypeerr(contextptr);
  }
  static define_unary_function_eval (__euler,&giac::_euler,_euler_s);
  define_unary_function_ptr5( at_euler ,alias_at_euler,&__euler,0,true);

  gen pa2b2(const gen & p,GIAC_CONTEXT){
    if (p==2)
      return makevecteur(1,1);
    if (!is_integer(p) || (p%4)!=1 || is_greater(1,p,contextptr)) return gensizeerr(contextptr);// car p!=1 mod 4
    gen q=(p-1)/4;
    gen a=2;
    gen ra;
    ra=powmod(a,q,p);
    //on cherche ra^2=-1 mod p avec ra!=1 et ra !=p-1
    while ((a!=p-1) && ((ra==1)|| (ra==p-1))){
      a=a+1;
      ra=powmod(a,q,p);
    }
    if ((ra==1)||(ra==p-1))  return gensizeerr(contextptr);//car p n'est pas premier
    gen ux=1,uy=ra,vx=0,vy=p,wx,wy; 
    gen m=1;
    while(m!=0){
      if (is_positive(vx*vx+vy*vy-ux*ux+uy*uy,0)){
	//on echange u et v
	wx=vx;
	wy=vy;
	vx=ux;
	vy=uy;
	ux=wx;
	uy=wy;
      }
      gen alpha=inv(2,contextptr)-(ux*vx+uy*vy)*inv(vx*vx+vy*vy,contextptr);
      //m=partie entiere de alpha (-v.v/2<(u+mv).v<=v.v/2)
      m=_floor(alpha,contextptr);
      ux=ux+m*vx;
      uy=uy+m*vy;
    }
    vecteur v(2);
    //v repond a la question
    v[0]=abs(vx,contextptr); // ok
    v[1]=abs(vy,contextptr); // ok
    if (vx*vx+vy*vy!=p)
      return gensizeerr(contextptr);
    return v;
  }
  gen _pa2b2(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (!is_integer(args)) 
      return gensizeerr(contextptr);
    gen n=args;
    return pa2b2(n,contextptr);
  }
  static const char _pa2b2_s []="pa2b2";
  static define_unary_function_eval (__pa2b2,&_pa2b2,_pa2b2_s);
  define_unary_function_ptr5( at_pa2b2 ,alias_at_pa2b2,&__pa2b2,0,true);

  static gen ipropfrac(const gen & a,const gen & b,GIAC_CONTEXT){
    if (!is_integer(a) || !is_integer(b))
      return gensizeerr(contextptr);
    gen r=a%b;
    gen q=(a-r)/b;
    gen d=gcd(r,b);
    r=r/d;
    gen b1=b/d;
    if (r==0)
      return q;
    gen v;
    v=symbolic(at_division,gen(makevecteur(r,b1),_SEQ__VECT));
    gen w;
    w=symbolic(at_plus,gen(makevecteur(q,v),_SEQ__VECT));
    if (calc_mode(contextptr)==1)
      return symbolic(at_quote,w);
    return w;
  }
  gen _propfrac(const gen & arg,GIAC_CONTEXT){
    if ( arg.type==_STRNG && arg.subtype==-1) return  arg;
    gen args(arg);
    vecteur v;
    if (arg.type==_VECT && arg._VECTptr->size()==2){
      v=vecteur(1,arg._VECTptr->back());
      args=arg._VECTptr->front();
      lvar(args,v);
    }
    else
      v=lvar(arg);
    gen g=e2r(args,v,contextptr);
    gen a,b;
    fxnd(g,a,b);
    if (v.empty())
      return ipropfrac(a,b,contextptr);
    else {
      gen d=r2e(b,v,contextptr);
      g=_quorem(makesequence(r2e(a,v,contextptr),d,v.front()),contextptr);
      if (is_undef(g)) return g;
      vecteur &v=*g._VECTptr;
      return v[0]+rdiv(v[1],d,contextptr);
    }
  }
  static const char _propfrac_s []="propfrac";
  static define_unary_function_eval (__propfrac,&_propfrac,_propfrac_s);
  define_unary_function_ptr5( at_propfrac ,alias_at_propfrac,&__propfrac,0,true);
  
  void step_egcd(int a,int b,GIAC_CONTEXT){
    gprintf("===============",vecteur(0),1,contextptr);
    gprintf("Extended Euclide algorithm for a=%gen and b=%gen",makevecteur(a,b),1,contextptr);
    gprintf("L%gen: 1*a+0*b=%gen",makevecteur(1,a),1,contextptr);
    gprintf("L%gen: 0*a+1*b=%gen",makevecteur(2,b),1,contextptr);
    int i=3;
    int u0=1,v0=0,u1=0,v1=1,u2,v2;
    for (;b;++i){
      int q=a/b;
      u2=u0-q*u1;
      v2=v0-q*v1;
      int r=a-q*b;
      gprintf("iquo(%gen,%gen)=%gen",makevecteur(a,b,q),1,contextptr);
      gprintf("L%gen=L%gen-%gen*L%gen: %gen*a+%gen*b=%gen",makevecteur(i,i-2,q,i-1,u2,v2,r),1,contextptr);
      u0=u1;
      u1=u2;
      v0=v1;
      v1=v2;
      a=b;
      b=r;
    }
    gprintf("Bezout identity %gen*a+%gen*b=%gen",makevecteur(u0,v0,a),1,contextptr);
  }

  gen iabcuv(const gen & a,const gen & b,const gen & c,GIAC_CONTEXT){
    gen d=gcd(a,b);
    if (c%d!=0)  return gensizeerr(gettext("No solution in ring"));
    gen a1=a/d,b1=b/d,c1=c/d;
    gen u,v,w;
    if (a1.type==_INT_ && b1.type==_INT_ && step_infolevel(contextptr))
      step_egcd(a1.val,b1.val,contextptr);
    egcd(a1,b1,u,v,w);
    vecteur r(2);
    r[0]=smod(u*c1,b);
    r[1]=iquo(c-r[0]*a,b);
    return r;
  }
  gen _iabcuv(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()!=3) )
      return gensizeerr(contextptr);
    gen a=args[0],b=args[1],c=args[2];
    return iabcuv(a,b,c,contextptr);
  }
  static const char _iabcuv_s []="iabcuv";
  static define_unary_function_eval (__iabcuv,&_iabcuv,_iabcuv_s);
  define_unary_function_ptr5( at_iabcuv ,alias_at_iabcuv,&__iabcuv,0,true);

  gen abcuv(const gen & a,const gen & b,const gen & c,const gen & x,GIAC_CONTEXT){
    gen g=_egcd(makesequence(a,b,x),contextptr);
    if (is_undef(g)) return g;
    vecteur & v=*g._VECTptr;
    gen h=_quorem(makesequence(c,v[2],x),contextptr);
    if (is_undef(h)) return h;
    vecteur & w=*h._VECTptr;
    if (!is_zero(w[1]))
      return gensizeerr(gettext("No solution in ring"));
    gen U=v[0]*w[0],V=v[1]*w[0];
    if (_degree(makesequence(c,x),contextptr).val<_degree(makesequence(a,x),contextptr).val+_degree(makesequence(b,x),contextptr).val ){
      U=_rem(makesequence(U,b,x),contextptr);
      V=_rem(makesequence(V,a,x),contextptr);
    }
    return makevecteur(U,V);
  }
  gen _abcuv(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()<3) )
      return gensizeerr(contextptr);
    vecteur & v =*args._VECTptr;
    if (v.size()>3)
      return abcuv(v[0],v[1],v[2],v[3],contextptr);
    return abcuv(v[0],v[1],v[2],vx_var,contextptr);
  }
  static const char _abcuv_s []="abcuv";
  static define_unary_function_eval (__abcuv,&_abcuv,_abcuv_s);
  define_unary_function_ptr5( at_abcuv ,alias_at_abcuv,&__abcuv,0,true);

  gen simp2(const gen & a,const gen & b,GIAC_CONTEXT){
    vecteur r(2);
    gen d=gcd(a,b);
    r[0]=normal(a/d,contextptr);
    r[1]=normal(b/d,contextptr);
    return r;
  }
  gen _simp2(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if ( (args.type!=_VECT) || (args._VECTptr->size()!=2) )
      return gensizeerr(contextptr);
    gen a=args[0],b=args[1];
    if ( (a.type==_VECT) || (b.type==_VECT) )
      return gensizeerr(contextptr);
    return simp2(a,b,contextptr);
  }
  static const char _simp2_s []="simp2";
  static define_unary_function_eval (__simp2,&_simp2,_simp2_s);
  define_unary_function_ptr5( at_simp2 ,alias_at_simp2,&__simp2,0,true);
 
  gen fxnd(const gen & a){
    vecteur v(lvar(a));
    gen g=e2r(a,v,context0); // ok
    gen n,d;
    fxnd(g,n,d);
    return makevecteur(r2e(n,v,context0),r2e(d,v,context0)); // ok
  }
  gen _fxnd(const gen & args,GIAC_CONTEXT){
    if ( args.type==_STRNG && args.subtype==-1) return  args;
    if (args.type==_VECT)
      return apply(args,fxnd);
    return fxnd(args);
  }
  static const char _fxnd_s []="fxnd";
  static define_unary_function_eval (__fxnd,&_fxnd,_fxnd_s);
  define_unary_function_ptr5( at_fxnd ,alias_at_fxnd,&__fxnd,0,true); 

#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC