TP07-sol.cas.out1 18.2 KB
[],
"Warning: some commands like subs might change arguments order",
0,0,0,1,0,1e-10,10,[1,50,0,25],0,0,0,
x^2+1,
 (x)->x^2+1,
x^2+4*x+5,
 (t)->subs(x=t,f),
(x+2)^2+1,
 (x)->x^2-2,
 (x)->eval(diff(f(x),x)),
2*x,
x^2,
0,
 (x)->2*x,
2*x,
2*x^2,
"Expecting an expression, not a function Error: Bad Argument Value",
fonction_diff( (t)->subs(x=t,f)),
"Expecting an expression, not a function Error: Bad Argument Value",
1,
3e+01,
3e+01,
2,
27.0,
10000,
"Done",
(x^2+2)/(2*x),
1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407989687253396546331808829640620615258352395054745750287759961729835575220337531857011354374603408498847160386899970699004815030544027790316454247823068492936918621580578463111596668713013015618568987237235288509264861249497715421833420428568606014682472077143585487415565706967765372022648544701585880162075847492265722600208558446652145839889394437092659180031138824646815708263010059485870400318648034219489727829064104507263688131373985525611732204024509122770022694112757362728049573810896750401836986836845072579936472906076299694138047565482372899718032680247442062926912485905218100445984215059112024944134172853147810580360337107730918286931471017111168391658172688941975871658215212822951848847208969463386289156288276595263514054226765323969461751129160240871551013515045538128756005263146801712740265396947024030051749531886292563138518816347800156936917688185237868405228783762938921430065586956868596459515550164472450983689603688732311438941557665104088391429233811320605243362948531704991577175622854974143899918802176243096520656421182731672625753959471725593463723863226148274262220867115583959992652117625269891754098815934864008345708518147223181420407042650905653233339843645786579679651926729239987536661721598257886026336361782749599421940377775368142621773879919455139723127406689832998989538672882285637869774966251996658352577619893932284534473569479496295216889148549253890475582883452609652409654288939453864662574492755638196441031697983306185201937938494005715633372054806854057586799967012137223947582142630658513221740883238294728761739364746783743196000159218880734785761725221186749042497736692920731109636972160893370866115673458533483329525467585164471075784860246360083444911481858765555428645512331421992631133251797060843655970435285641008791850076036100915946567067688360557174007675690509613671940132493560524018599910506210816359772643138060546701029356997104242510578174953105725593498445112692278034491350663756874776028316282960553242242695753452902883876844642917328277088831808702533985233812274999081237189254072647536785030482159180188616710897286922920119759988070381854333253646021108229927929307287178079988809917674177410898306080032631181642798823117154363869661702999934161614878686018045505553986913115186010386375325004558186044804075024119518430567453368361367459737442398855328517930896037389891517319587413442881784212502191695187559344438739618931454999990610758704909026088351763622474975785885836803745793115733980209998662218694992259591327642361941059210032802614987456659968887406795616739185957288864247346358588686449682238600698335264279905628316561391394255764906206518602164726303336297507569787060660685649816009271870929215313236828135698893709741650447459096053747279652447709409924123871061447054398674364733847745481910087288622214958952959118789214917983398108378827815306556231581036064867587303601450227320882935134138722768417667843690529428698490838455744579409598626074249954916802853077398938296036213353987532050919989360751390644449576845699347127636450716327915470159773354863893942325727754003826027478567417258095141630715959784981800944356037939098559016827215403458158152100493666295344882710729239660232163823826661262683050257278116945103537937156882336593229782319298606467978986409208560955814261436363100461559433255047449397593399912541953230093217530447653396470662761166175351875464620967634558738616488019884849747926404506544489691004079421181692579685756378488149898641685499491635761448404702103398921534237703723335311564594438970365316672194904935188290580630740134686264167247011065346349391640714628556798017793381442404526913706660977763878486623800339232437047411533187253190601916599645538115788841380843323210533767461812178014296092832411362752540887372905129407339479433061943956936702079429515878228349321931666411130154959469837897767434443539337709957134988407890850815892366070088658105470949790465722988880892461282816013133701029080290999745647849581545614648715516390502419857906131093458783306200262207372471676685455499904994085710809925759928893236615438271955005781625133038153146577907926868500806984428479152424275441026805756321565322061885751225113063937025362927161968251259192025216058701189596732244239267423734490764646727375347964598819149807931718002423855453886038368310800779182466462754117444250018727779518164383451463461299020763343017968554385631667723518389336667042222110939144930287963812839889311731308430042125550185498506529455637766031461255909104611384768282359592477228629042642736163264585443392877263860343149804896397363329754885925681149296836126725898573833216436663487023477302610106130507298611534129948808774473111229542652751653665911730142360626525869077198217037098104644360477226739282987415259306956206384710827408218490673723305874302970924289948173924407869375284401044399048520878851914193541512900681735170306938697059004742515765524807844736214410501620084544412225595620298472594035280190679806809830039645398568593045862526063779745355992774729906488874545124249607637801086390019105809287476472075110923860595019543228160208879621516233852161287522851802529287618325703717285740676394490982546442218465430880661058020158472840671263025459379890650816857137165668594130053319703659640337667414610495637651030836613489310947802681293557331890551970520184515039969098663152512411611192594055280856498931958983456233198368349488080617156243911286631279784837197895336901527760054980551663501978555711014055529763384127504468604647663183266116518206750120476699109872191044474403268943641595942792199442355371870429955924031409171284815854386600538571358363981630945240755700932516824344168240836197927337282521546224696153321702682995097908903459485887834943961620435842249739718711395892730509219705491717696160044558089942787888036916943289459514722672292612485069617316380941082186004528610269654757630431025602715231396948213551982140971654909731999283492567409749039229712634869341457493319804171807611196390227866407592243416776246623623891311027034330457636814112832132630858223945621959808661293999620123415617631817431242008901498384856048087986460839359649236651429681257731432291456871682762199611827826953157498380262465175905410397618128760421638613450221326272775661244113361077519555774950865636067378665062318564069912280187574178549466125327599769796059776059075648910666101583841720281853043211904465775255427754379872605488173619826758168628329526078993222668360283851351228105931859102864150815705631971731518313625024359041463212239217663398268936825315053005989154702909537193266207341123494743367884690201390497842852163414429214589558287847669394646426781221904978563635526336827805186009869924893778600239876916980765662194389854437080594643336233381058745816235475600136592435242657143083465545768002370814675732525470255074763747163506785159917369379325103268276062864591461820472148637037077192692682362333472037924596469181052613915308628029144096548256387309273042654466292904589606375191871146934536197332478957270703153093090192119919999361576500350398405406742538792752792272473356677060783791138448893626136765706026360031513295209539520285489738448625613492441470860708660267634997879342087583612194711699422384848259591430452810706260150896913530301772006271705440209066951491527459771970594769547409521028787255785688002219371774355811079393088338455864827729100862955456614130672123084874022712105868632338823741388442893815544464710575565146843570294663506289387356986868837648032651952841465351739530273612013742030098673983851432190043602898269829352939941412923058038456502270721681516194101144982630136490087704839848838609065336859905458389520318564804149327214239086516499943165920796595356943072311291162928679751715668890543932203569129332457020806719444049730494398140822782960279942454108316667592142483518272381720504103927428880155622338079614751243351473102128454594489944499600075243751957011668341744749079588209951783676802323651767497230148745774272599476096219843271483529861119027287358490521797590837419748602670605374623153003937521236786775284869219585713755426968482783631786110993368014391590597484285805451613023014397905701610889862777961075067333267604865492925139978139053588227689373220494148394013556035656044214017612060513180689198996260618483185340183623782172663758045524719626617492542285280457144204857834211322800852870420548899234127855481236761537707104254469868521991122835426634999712748366076246241820736466617128394748473280474430403344107200428727127567027956758242926271945458053002666489965079569778178621942172005237165369467704195111912704624836051130289046437751148694887849615118841471910001255883836660677208411235153558811267789571558590412576261601067513153580212427331871000635824954504099579407254798900316826512373119055668291519430537084893078691974282904903860372311609928342431712225099454715019286664878710795199518005463388384431548172463548024451803084527343100062137103462573306001234973744355818096567846464153390514656919324562353140577919369898842364718352537580525771331120079710406831549266540202604680681839143782721476906324246951712863673844313983337117615941869993466262345373452356794012416809229116360956372167452839170990914664850739205151605604737871061547021699607465693097944261214692561593425649401912298951473254471518126325836889728226283329524035970072786336460459470712417472946877570595815734996284809956783925547424044899188707106967524250774520122936081057414265323472406416214103335334055110452126175035902840374545918645047276243420717709297935401021409646450283683418040758608100140721619247717980985968111540446443728568959286831977797786934641598469745133917741537904877880830022058335046746555323028587325835,
"Done",
10,
[[0,0,0,0,0,-64],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,16],[0,0,0,1,0,0],[0,0,0,0,1,0]],
[[0,0,0,0,0,64],[1,0,0,0,0,0],[0,1,0,0,0,-48],[0,0,1,0,0,0],[0,0,0,1,0,12],[0,0,0,0,1,0]],
[[0,0,0,0,0,-64,0,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0,0,0,0],[0,0,1,0,0,16,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,64],[0,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,0,0,0,-48],[0,0,0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0,0,1,0,12],[0,0,0,0,0,0,0,0,0,0,1,0]],
0,0,1,1,0,1e-10,10,[1,50,0,25],0,1,0,
[[2,1,0,0,0,0,0,0,0,0,0,0],[0,2,1,0,0,0,0,0,0,0,0,0],[0,0,2,0,0,0,0,0,0,0,0,0],[0,0,0,2,1,0,0,0,0,0,0,0],[0,0,0,0,2,0,0,0,0,0,0,0],[0,0,0,0,0,-2,1,0,0,0,0,0],[0,0,0,0,0,0,-2,1,0,0,0,0],[0,0,0,0,0,0,0,-2,0,0,0,0],[0,0,0,0,0,0,0,0,0,-4,1,0],[0,0,0,0,0,0,0,0,1,-2,0,1],[0,0,0,0,0,0,0,0,0,0,0,-4],[0,0,0,0,0,0,0,0,0,0,1,-2]],
[[0,0,2,1,0,0],[1,0,0,0,1,0],[0,1,0,0,0,1],[0,0,0,0,0,2],[0,0,0,1,0,0],[0,0,0,0,1,0]],
[[2,1,0,0,0,0,0,0,0,0,0,0],[0,2,1,0,0,0,0,0,0,0,0,0],[0,0,2,0,0,0,0,0,0,0,0,0],[0,0,0,2,1,0,0,0,0,0,0,0],[0,0,0,0,2,0,0,0,0,0,0,0],[0,0,0,0,0,-2,1,0,0,0,0,0],[0,0,0,0,0,0,-2,1,0,0,0,0],[0,0,0,0,0,0,0,-2,0,0,0,0],[0,0,0,0,0,0,0,0,(-I)*sqrt(3)-1,1,0,0],[0,0,0,0,0,0,0,0,0,(-I)*sqrt(3)-1,0,0],[0,0,0,0,0,0,0,0,0,0,I*sqrt(3)-1,1],[0,0,0,0,0,0,0,0,0,0,0,I*sqrt(3)-1]],
[[0,0,0,-128,-96,0,0,0,64*I*sqrt(3)+192,256*I*sqrt(3)-384,64*I*sqrt(3),192],[0,0,0,-64,-16,0,0,0,32*I*sqrt(3)-96,(-128*I)*sqrt(3)-96,(-16*I)*sqrt(3)+48,(-40*I)*sqrt(3)-24],[0,0,0,-32,8,0,0,0,(-32*I)*sqrt(3),96,(-8*I)*sqrt(3)-24,8*I*sqrt(3)-24],[0,0,0,16,36,0,0,0,(-8*I)*sqrt(3)-24,(-44*I)*sqrt(3)+84,(-8*I)*sqrt(3),6*I*sqrt(3)-42],[0,0,0,8,14,0,0,0,(-4*I)*sqrt(3)+12,28*I*sqrt(3)+12,2*I*sqrt(3)-6,8*I*sqrt(3)+12],[0,0,0,4,5,0,0,0,4*I*sqrt(3),(-3*I)*sqrt(3)-21,I*sqrt(3)+3,(-4*I)*sqrt(3)+3],[96,144,88,0,0,512,-768,672,0,0,0,0],[48,48,20,0,0,-256,256,-208,0,0,0,0],[-48,-96,-62,0,0,-256,512,-432,0,0,0,0],[-24,-36,-13,0,0,128,-192,120,0,0,0,0],[6,15,16,0,0,32,-80,98,0,0,0,0],[3,6,5,0,0,-16,32,-33,0,0,0,0]],
 (i,j)->if i=j then J[i,j]; 
fi ,
matrix[[2,0,0,0,0,0,0,0,0,0,0,0],[0,2,0,0,0,0,0,0,0,0,0,0],[0,0,2,0,0,0,0,0,0,0,0,0],[0,0,0,2,0,0,0,0,0,0,0,0],[0,0,0,0,2,0,0,0,0,0,0,0],[0,0,0,0,0,-2,0,0,0,0,0,0],[0,0,0,0,0,0,-2,0,0,0,0,0],[0,0,0,0,0,0,0,-2,0,0,0,0],[0,0,0,0,0,0,0,0,(-I)*sqrt(3)-1,0,0,0],[0,0,0,0,0,0,0,0,0,(-I)*sqrt(3)-1,0,0],[0,0,0,0,0,0,0,0,0,0,I*sqrt(3)-1,0],[0,0,0,0,0,0,0,0,0,0,0,I*sqrt(3)-1]],
matrix[[0,0,8/3,0,0,-128/3,0,0,0,0,0,0],[4/3,0,0,8/3,0,0,0,0,0,0,0,0],[0,4/3,0,0,8/3,0,0,0,0,0,0,0],[0,0,2/3,0,0,40/3,0,0,0,0,0,0],[-1/24,0,0,2/3,0,0,0,0,0,0,0,0],[0,-1/24,0,0,2/3,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,3/2,0,-2,0,24],[0,0,0,0,0,0,15/8,0,3/2,0,-2,0],[0,0,0,0,0,0,0,3/4,0,3,0,-20],[0,0,0,0,0,0,-5/16,0,3/4,0,3,0],[0,0,0,0,0,0,0,-1/32,0,3/8,0,15/2],[0,0,0,0,0,0,3/128,0,-1/32,0,3/8,0]],
matrix[[0,0,-8/3,0,0,-64/3,0,0,0,0,0,0],[-1/3,0,0,-8/3,0,0,0,0,0,0,0,0],[0,-1/3,0,0,-8/3,0,0,0,0,0,0,0],[0,0,1/3,0,0,8/3,0,0,0,0,0,0],[1/24,0,0,1/3,0,0,0,0,0,0,0,0],[0,1/24,0,0,1/3,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,-3/2,0,2,0,40],[0,0,0,0,0,0,-7/8,0,-3/2,0,2,0],[0,0,0,0,0,0,0,1/4,0,-3,0,-28],[0,0,0,0,0,0,5/16,0,1/4,0,-3,0],[0,0,0,0,0,0,0,1/32,0,5/8,0,9/2],[0,0,0,0,0,0,-3/128,0,1/32,0,5/8,0]],
matrix[[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0]],
x^2,
x^2+1,
 (x)->eval(diff(p,x)),
2*x,
1,
 (x)->2*x,
2*x,
2*x^2,
2,
2,
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0,0,0,0,0,-80,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0,0,0,0,0,0,0,80,0,0,0,0,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,1,0,0,0,0,0,-40,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,1,0,0,10,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]],
proc(A) 
  m:=pcar(A,x,'lagrange');  
  p:=unapply(normal(m/gcd(m,diff(m,x))),x);  
  dp:=unapply(normal(diff(p(x),x)),x);  
  u:=x;  
  while (rem(p(u),m,x))<>0 do  
    d:=gcdex(m,dp(u),x,'s','t'); 
    invdp:=t/d; 
    u:=rem(u-p(u)*invdp,m,x); 
   od;;  
  horner(u,A);  
 
end;,
matrix[[0,0,70/243,0,0,-28/243,0,0,40/243,0,0,-160/243,0,0,3520/243,0,0,0,0,0],[455/243,0,0,70/243,0,0,-28/243,0,0,40/243,0,0,-160/243,0,0,0,0,0,0,0],[0,455/243,0,0,70/243,0,0,-28/243,0,0,40/243,0,0,-160/243,0,0,0,0,0,0],[0,0,280/243,0,0,140/243,0,0,-128/243,0,0,440/243,0,0,-8960/243,0,0,0,0,0],[-455/486,0,0,280/243,0,0,140/243,0,0,-128/243,0,0,440/243,0,0,0,0,0,0,0],[0,-455/486,0,0,280/243,0,0,140/243,0,0,-128/243,0,0,440/243,0,0,0,0,0,0],[0,0,-35/162,0,0,70/81,0,0,80/81,0,0,-176/81,0,0,3080/81,0,0,0,0,0],[65/162,0,0,-35/162,0,0,70/81,0,0,80/81,0,0,-176/81,0,0,0,0,0,0,0],[0,65/162,0,0,-35/162,0,0,70/81,0,0,80/81,0,0,-176/81,0,0,0,0,0,0],[0,0,10/243,0,0,-35/486,0,0,160/243,0,0,440/243,0,0,-4928/243,0,0,0,0,0],[-91/972,0,0,10/243,0,0,-35/486,0,0,160/243,0,0,440/243,0,0,0,0,0,0,0],[0,-91/972,0,0,10/243,0,0,-35/486,0,0,160/243,0,0,440/243,0,0,0,0,0,0],[0,0,-7/1944,0,0,5/972,0,0,-5/243,0,0,110/243,0,0,1540/243,0,0,0,0,0],[35/3888,0,0,-7/1944,0,0,5/972,0,0,-5/243,0,0,110/243,0,0,0,0,0,0,0],[0,35/3888,0,0,-7/1944,0,0,5/972,0,0,-5/243,0,0,110/243,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,0,1,0]],
matrix[[0,0,-70/243,0,0,28/243,0,0,-40/243,0,0,160/243,0,0,4256/243,0,0,0,0,0],[-212/243,0,0,-70/243,0,0,28/243,0,0,-40/243,0,0,160/243,0,0,0,0,0,0,0],[0,-212/243,0,0,-70/243,0,0,28/243,0,0,-40/243,0,0,160/243,0,0,0,0,0,0],[0,0,-37/243,0,0,-140/243,0,0,128/243,0,0,-440/243,0,0,-10480/243,0,0,0,0,0],[455/486,0,0,-37/243,0,0,-140/243,0,0,128/243,0,0,-440/243,0,0,0,0,0,0,0],[0,455/486,0,0,-37/243,0,0,-140/243,0,0,128/243,0,0,-440/243,0,0,0,0,0,0],[0,0,35/162,0,0,11/81,0,0,-80/81,0,0,176/81,0,0,3400/81,0,0,0,0,0],[-65/162,0,0,35/162,0,0,11/81,0,0,-80/81,0,0,176/81,0,0,0,0,0,0,0],[0,-65/162,0,0,35/162,0,0,11/81,0,0,-80/81,0,0,176/81,0,0,0,0,0,0],[0,0,-10/243,0,0,35/486,0,0,83/243,0,0,-440/243,0,0,-4792/243,0,0,0,0,0],[91/972,0,0,-10/243,0,0,35/486,0,0,83/243,0,0,-440/243,0,0,0,0,0,0,0],[0,91/972,0,0,-10/243,0,0,35/486,0,0,83/243,0,0,-440/243,0,0,0,0,0,0],[0,0,7/1944,0,0,-5/972,0,0,5/243,0,0,133/243,0,0,890/243,0,0,0,0,0],[-35/3888,0,0,7/1944,0,0,-5/972,0,0,5/243,0,0,133/243,0,0,0,0,0,0,0],[0,-35/3888,0,0,7/1944,0,0,-5/972,0,0,5/243,0,0,133/243,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/2,0,0,0,0]],
matrix[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
x^4-2*x,
1