symbol.cpp
3.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <poincare/symbol.h>
#include <poincare/context.h>
#include <poincare/complex.h>
#include "layout/baseline_relative_layout.h"
#include "layout/string_layout.h"
#include <poincare/complex_matrix.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Symbol::SpecialSymbols Symbol::matrixSymbol(char index) {
switch (index - '0') {
case 0:
return SpecialSymbols::M0;
case 1:
return SpecialSymbols::M1;
case 2:
return SpecialSymbols::M2;
case 3:
return SpecialSymbols::M3;
case 4:
return SpecialSymbols::M4;
case 5:
return SpecialSymbols::M5;
case 6:
return SpecialSymbols::M6;
case 7:
return SpecialSymbols::M7;
case 8:
return SpecialSymbols::M8;
case 9:
return SpecialSymbols::M9;
default:
assert(false);
return SpecialSymbols::M0;
}
}
Symbol::Symbol(char name) :
m_name(name)
{
}
template<typename T>
Evaluation<T> * Symbol::templatedEvaluate(Context& context, AngleUnit angleUnit) const {
if (context.expressionForSymbol(this) != nullptr) {
return context.expressionForSymbol(this)->evaluate<T>(context, angleUnit);
}
return new Complex<T>(Complex<T>::Float(NAN));
}
Expression::Type Symbol::type() const {
return Expression::Type::Symbol;
}
char Symbol::name() const {
return m_name;
}
ExpressionLayout * Symbol::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const {
assert(floatDisplayMode != FloatDisplayMode::Default);
assert(complexFormat != ComplexFormat::Default);
if (m_name == SpecialSymbols::Ans) {
return new StringLayout("ans", 3);
}
if (m_name == SpecialSymbols::un) {
return new BaselineRelativeLayout(new StringLayout("u", 1), new StringLayout("n",1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_name == SpecialSymbols::un1) {
return new BaselineRelativeLayout(new StringLayout("u", 1), new StringLayout("n+1",3, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_name == SpecialSymbols::vn) {
return new BaselineRelativeLayout(new StringLayout("v", 1), new StringLayout("n",1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_name == SpecialSymbols::vn1) {
return new BaselineRelativeLayout(new StringLayout("v", 1), new StringLayout("n+1",3, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_name == SpecialSymbols::wn) {
return new BaselineRelativeLayout(new StringLayout("w", 1), new StringLayout("n",1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_name == SpecialSymbols::wn1) {
return new BaselineRelativeLayout(new StringLayout("w", 1), new StringLayout("n+1",3, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (isMatrixSymbol()) {
const char mi[] = { 'M', (char)(m_name-(char)SpecialSymbols::M0+'0') };
return new StringLayout(mi, sizeof(mi));
}
return new StringLayout(&m_name, 1);
}
Expression * Symbol::clone() const {
return new Symbol(m_name);
}
bool Symbol::valueEquals(const Expression * e) const {
assert(e->type() == Expression::Type::Symbol);
return (m_name == ((Symbol *)e)->m_name);
}
bool Symbol::isMatrixSymbol() const {
if (m_name >= (char)SpecialSymbols::M0 && m_name <= (char)SpecialSymbols::M9) {
return true;
}
return false;
}
}