prediction_interval.cpp
1.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <poincare/prediction_interval.h>
#include <poincare/matrix.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
PredictionInterval::PredictionInterval() :
Function("prediction95", 2)
{
}
Expression::Type PredictionInterval::type() const {
return Type::PredictionInterval;
}
Expression * PredictionInterval::cloneWithDifferentOperands(Expression** newOperands,
int numberOfOperands, bool cloneOperands) const {
assert(newOperands != nullptr);
PredictionInterval * pi = new PredictionInterval();
pi->setArgument(newOperands, numberOfOperands, cloneOperands);
return pi;
}
template<typename T>
Evaluation<T> * PredictionInterval::templatedEvaluate(Context& context, AngleUnit angleUnit) const {
Evaluation<T> * pInput = m_args[0]->evaluate<T>(context, angleUnit);
Evaluation<T> * nInput = m_args[1]->evaluate<T>(context, angleUnit);
T p = pInput->toScalar();
T n = nInput->toScalar();
delete pInput;
delete nInput;
if (std::isnan(p) || std::isnan(n) || n != (int)n || n < 0 || p < 0 || p > 1) {
return new Complex<T>(Complex<T>::Float(NAN));
}
Complex<T> operands[2];
operands[0] = Complex<T>::Float(p - 1.96*std::sqrt(p*(1.0-p))/std::sqrt(n));
operands[1] = Complex<T>::Float(p + 1.96*std::sqrt(p*(1.0-p))/std::sqrt(n));
return new ComplexMatrix<T>(operands, 1, 2);
}
}