confidence_interval.cpp
1.31 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <poincare/confidence_interval.h>
#include <poincare/matrix.h>
#include <poincare/evaluation.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
ConfidenceInterval::ConfidenceInterval() :
Function("confidence", 2)
{
}
Expression::Type ConfidenceInterval::type() const {
return Type::ConfidenceInterval;
}
Expression * ConfidenceInterval::cloneWithDifferentOperands(Expression** newOperands,
int numberOfOperands, bool cloneOperands) const {
assert(newOperands != nullptr);
ConfidenceInterval * ci = new ConfidenceInterval();
ci->setArgument(newOperands, numberOfOperands, cloneOperands);
return ci;
}
template<typename T>
Evaluation<T> * ConfidenceInterval::templatedEvaluate(Context& context, AngleUnit angleUnit) const {
Evaluation<T> * fInput = m_args[0]->evaluate<T>(context, angleUnit);
Evaluation<T> * nInput = m_args[1]->evaluate<T>(context, angleUnit);
T f = fInput->toScalar();
T n = nInput->toScalar();
delete fInput;
delete nInput;
if (std::isnan(f) || std::isnan(n) || n != (int)n || n < 0 || f < 0 || f > 1) {
return new Complex<T>(Complex<T>::Float(NAN));
}
Complex<T> operands[2];
operands[0] = Complex<T>::Float(f - 1/std::sqrt(n));
operands[1] = Complex<T>::Float(f + 1/std::sqrt(n));
return new ComplexMatrix<T>(operands, 1, 2);
}
}