Blame view

Giac_maj/giac-1.4.9/src/risch.cc 34.5 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
  // -*- mode:C++ ; compile-command: "g++-3.4 -I.. -g -c risch.cc -DHAVE_CONFIG_H -DIN_GIAC" -*-
  #include "giacPCH.h"
  /*
   *  Copyright (C) 2003,14 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
   *
   *  This program is free software; you can redistribute it and/or modify
   *  it under the terms of the GNU General Public License as published by
   *  the Free Software Foundation; either version 3 of the License, or
   *  (at your option) any later version.
   *
   *  This program is distributed in the hope that it will be useful,
   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   *  GNU General Public License for more details.
   *
   *  You should have received a copy of the GNU General Public License
   *  along with this program. If not, see <http://www.gnu.org/licenses/>.
   */
  using namespace std;
  #include <stdexcept>
  #include "vector.h"
  #include <cmath>
  #include <cstdlib>
  #include "sym2poly.h"
  #include "usual.h"
  #include "intg.h"
  #include "subst.h"
  #include "derive.h"
  #include "lin.h"
  #include "vecteur.h"
  #include "gausspol.h"
  #include "plot.h"
  #include "prog.h"
  #include "modpoly.h"
  #include "series.h"
  #include "tex.h"
  #include "ifactor.h"
  #include "risch.h"
  #include "misc.h"
  #include "giacintl.h"
  
  #ifndef NO_NAMESPACE_GIAC
  namespace giac {
  #endif // ndef NO_NAMESPACE_GIAC
  
    static bool in_risch(const gen & e,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT);
    static bool risch_poly_part(const vecteur & e,int shift,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT);
    static bool risch_desolve(const gen & f,const gen & g,const identificateur & x,const vecteur & v,gen & y,bool f_is_derivative,GIAC_CONTEXT);
  
    // returns true & the tower of extension if g is elementary 
    // false otherwise
    static bool risch_tower(const identificateur & x,gen &g, vecteur & v,GIAC_CONTEXT){
      g=tsimplify(pow2expln(g,x,contextptr),contextptr);
      v=rlvarx(g,x);
      const_iterateur it=v.begin(),itend=v.end();
      for (;it!=itend;++it){
        if (*it==x)
  	continue;
        if (!it->is_symb_of_sommet(at_exp) && (!it->is_symb_of_sommet(at_ln)) )
  	return false;
      }
      reverse(v.begin(),v.end()); // most complex var at the beginning
      return true;
    }
  
    // Compute the derivative of a poly or fraction
    // The derivative wrt to x_i (i-th index) is the i-th element of v
    // The last element of v should normally be 1 (derivative of x)
    static fraction diff(const polynome & f,const vecteur & v){
      int s=int(v.size());
      if (f.dim<s)
        return fraction(gensizeerr(gettext("Risch diff dimension")));
      fraction res(zero);
      std::vector< monomial<gen> >::const_iterator it=f.coord.begin(),itend=f.coord.end();
      for (;it!=itend;++it){
        index_t i= it->index.iref();
        fraction tmp(zero);
        for (int n=0;n<s;++n){
  	if (i[n]){
  	  --i[n];
  	  if (v[n].type==_FRAC)
  	    tmp=tmp+gen(polynome(monomial<gen>(i[n]+1,i)))*(*v[n]._FRACptr);
  	  else
  	    tmp=tmp+fraction(gen(polynome(monomial<gen>(i[n]+1,i)))*v[n]);
  	  ++i[n];
  	}
        }
        res=res+it->value*tmp;
      }
      return res;
    }
  
    
    static polynome rothstein_trager_resultant(const polynome & num,const polynome & den,const vecteur & vl,polynome & p1,GIAC_CONTEXT){
      int s=num.dim;
      fraction denprime=diff(den,vl);
      if (is_undef(denprime.num)){
        return gen2poly(denprime.num,s);
      }
      p1=num*gen2poly(denprime.den,s);
      p1=p1.untrunc1();
      polynome p2(monomial<gen>(plus_one,1,s+1));
      p2=p2*gen2poly(denprime.num,s).untrunc1();
      p1=p1-p2;
      p2=den.untrunc1();
      // exchange var 1 (parameter t) and 2 (top tower variable)
      vector<int> i=transposition(0,1,s+1);
      p1.reorder(i);
      // Change sign of p1 if first coeff is negative
      if (is_positive(-p1.coord.front().value,context0)) // ok
        p1=-p1;
      p2.reorder(i);
      polynome pres=Tresultant<gen>(p1,p2),pcontent(s);
      p1.reorder(i);
      return pres.trunc1(); // pres top var is the parameter t
    }
  
    /*
    fraction diff(const fraction & f,const vecteur & v){
      if (f.num.type!=_POLY){
        if (f.den.type!=_POLY)
  	return zero;
        return -diff(*f.den._POLYptr,v)*fraction(f.num,f.den*f.den);
      }
      polynome & num = *f.num._POLYptr;
      if (f.den.type!=_POLY)
        return diff(*f.num._POLYptr,v)/f.num;
      polynome & den = *f.den._POLYptr;
      return diff(num,v)*f.den-diff(den,v)*fraction(f.num,f.den*f.den);
    }
    */
  
    // diff(n/d*exp(a*x))
    static bool diff(const polynome & n,const polynome & d,const gen & a,const vecteur & v,polynome & resn,polynome & resd){
      int s=n.dim;
      fraction nprime(diff(n,v)),dprime(diff(d,v));
      if (is_undef(nprime.num) || is_undef(dprime.num))
        return false;
      polynome nn(gen2polynome(nprime.num,s)),nd(gen2polynome(nprime.den,s));
      polynome dn(gen2polynome(dprime.num,s)),dd(gen2polynome(dprime.den,s));
      // ((n/d)*exp(a*x))'=(n'*d-d'*n)/d^2+a*n/d = (nn/nd*d-dn/dd*n)/d^2+a*n/d
      resn = nn*d*dd-dn*n*nd;
      resd = d*d*dd*nd;
      if (!is_zero(a)){
        // resn/resd + a*n/d = (resn*aden*d+resd*anum*n)/(d*resd)
        gen num,den;
        fxnd(a,num,den);
        polynome anum=gen2poly(num,resd.dim),aden=gen2poly(den,resd.dim);
        resn = resn*aden*d + resd*anum*n;
        resd = resd*d*aden;
      }
      simplify(resn,resd);
      return true;
    }
  
  
    static bool rischde_simplify(polynome & R,polynome & S, polynome & T){
      polynome lcmdeno=gcd(gcd(R,S),T);
      R=R/lcmdeno;
      S=S/lcmdeno;
      T=T/lcmdeno;
      // if gcd(R,S) does not divide T then there is no solution
      lcmdeno=gcd(R,S);
      return lcmdeno.lexsorted_degree()==0;
    }
  
    static bool spde_x(const polynome & S0,const polynome & R0,const polynome & T0,const vecteur & vdiff,polynome & N1,polynome & N2){ // Solve S*N+R*N'=T, R constant poly
      gen con=gcd(Tcontent(S0),gcd(Tcontent(R0),Tcontent(T0)));
      polynome S(S0/con),R(R0/con),T(T0/con);
      int s=T.dim;
      if (T.coord.empty()){
        N1=T;
        N2=gen2poly(plus_one,s);
        return true;
      }
      if (T.lexsorted_degree()<S.lexsorted_degree())
        return false;
      polynome quo(s),rem(s),a(s);
      T.TPseudoDivRem(S,quo,rem,a); 
      // a*T=quo*S+rem -> quo/a is the quotient T/S, 
      // it has the same high degree polynomial part as N
      // We set N=quo/a+ M, where M satisfies
      // S*M+R*M'=T-S*(quo/a)-R*(quo/a)'
      // or a*dNden*(S*M+R*M')= a*dNden*(T-S*(quo/a)-R*(quo/a)')
      // Let R*(quo/a)'=dNnum/dNden
      // newS=a*dNden*S, newR=a*dNden*R, newT=a*dNden*T-S*quo*dNden-a*dNnum
      fraction quo_a=fraction(quo,a).normal();
      // fraction dN(diff(quo,vdiff)/a-(diff(a,vdiff)*quo)/(a*a));
      fraction tmp1(diff(quo,vdiff));
      tmp1.den=a*tmp1.den;
      fraction tmp2(diff(a,vdiff));
      if (is_undef(tmp1.num) || is_undef(tmp2.num))
        return false;
      tmp2.num=tmp2.num*quo;
      tmp2.den=tmp2.den*a*a;
      fraction dN((tmp1-tmp2).normal());
      polynome dNnum(R*gen2poly(dN.num,s)),dNden(gen2poly(dN.den,s));
      polynome newT(T*dNden*a-quo*S*dNden-a*dNnum);
      if (!spde_x(a*dNden*S,a*dNden*R,newT,vdiff,N1,N2))
        return false;
      // M=N1/N2 hence N=quo/a+M=quo/a+N1/N2
      fraction Nres=quo_a+fraction(N1,N2);
      N1=gen2poly(Nres.num,s);
      N2=gen2poly(Nres.den,s);
      return true;
    }
  
    static bool SPDE(const polynome &R0,const polynome & S0,const polynome & T0,const identificateur & x,const vecteur & v,const vecteur & vdiff,const vecteur & lv,int ydeg, gen & prim,GIAC_CONTEXT){
      // SPDE algorithm to reduce R to a constant polynomial wrt to Z
      // this will also reduce ydeg, initial equation is  Ry'+Sy=T
      // Principe: if degree(R)>0, find U and V s.t. RU+SV=T and deg(V)<deg(R)
      // Then y = V + R*z and y'=U - S*z
      // hence V'+Rz'+R'z=U-S*z -> R z' + (R' - S) z = U - V'
      if (T0.coord.empty()){
        prim=zero;
        return true;
      }
      polynome R(R0),S(S0),T(T0);
      int s=int(lv.size());
      if (ydeg<0 || !rischde_simplify(R,S,T))
        return false;
      int r=R.lexsorted_degree();
      if (R.lexsorted_degree()){
        polynome U(s),V(s),c(s);
        // U,V / R*U+S*V=c*T, c cst wrt main var, degV<degR
        Tabcuv<gen>(S,R,T,V,U,c); 
        fraction dR(diff(R,vdiff)),dV(diff(V,vdiff));
        if (is_undef(dR.num)||is_undef(dV.num))
  	return false;
        dV.den=dV.den*c;
        fraction tmpfrac=fraction(V,c*c)*diff(c,vdiff);
        if (is_undef(tmpfrac.num))
  	return false;
        dV=dV-tmpfrac; // now dV=(V/c)'
        polynome dRnum(gen2poly(dR.num,s)),dRden(gen2poly(dR.den,s)),dVnum(gen2poly(dV.num,s)),dVden(gen2poly(dV.den,s));
        polynome newR(R*dRden*dVden),newS((S*dRden+dRnum)*dVden),newT((((U*dVden)/c)-dVnum)*dRden);
        ydeg=ydeg-r;
        if(!SPDE(newR,newS,newT,x,v,vdiff,lv,ydeg,prim,contextptr))
  	return false;
        prim=r2sym(R,lv,contextptr)*prim+r2sym(V,lv,contextptr)/r2sym(c,lv,contextptr);
        return true;
      }
      // degree(R)=0, Final resolution  
      gen Z=v.front();
      if (Z==x || S.lexsorted_degree()){ // S*N+N'=T
        polynome N1,N2;
        if (!spde_x(S,R,T,vdiff,N1,N2))
  	return false;
        prim=r2sym(N1,lv,contextptr)/r2sym(N2,lv,contextptr);
        return true;
      }
      vecteur v1(v.begin()+1,v.end());
      vecteur lv1(lv.begin()+1,lv.end());
      vecteur t=polynome2poly1(T,1);
      t=*r2sym(t,lv1,contextptr)._VECTptr;
      gen rr=r2sym(R,lv,contextptr);
      t=divvecteur(t,rr);
      if (S.coord.empty()){ // solve y'=T -> polynomial part with 1 less var 
        gen lncoeff,remains;
        return risch_poly_part(t,0,x,v1,plus_one,prim,lncoeff,remains,contextptr);
      }
      // for each power solve a risch de with 1 less var
      if (ydeg<signed(t.size())-1 || Z.type!=_SYMB)
        return false;
      // t=mergevecteur(vecteur(ydeg-t.size()-1),t);
      gen z=Z._SYMBptr->feuille;
      gen dz=derive(z,x,contextptr);
      if (is_undef(dz))
        return false;
      gen b=r2sym(S,lv,contextptr)/rr;
      int tdeg=int(t.size())-1;
      gen previous,sol;
      bool ok;
      for (int k=tdeg;k>=0;--k){
        if (Z.is_symb_of_sommet(at_exp))
  	ok=risch_desolve(k*dz+b,t[tdeg-k],x,v1,sol,false,contextptr);
        else
  	ok=risch_desolve(b,t[tdeg-k]-(k+1)*previous*dz/z,x,v1,sol,false,contextptr);
        if (!ok)
  	return false;
        prim=prim+sol*pow(Z,k);
        previous=sol;
      }
      return true;
    }
  
    // solve y'+f*y=g in rational fraction of v
    // returns true and y or false
    static bool risch_desolve(const gen & f,const gen & g,const identificateur & x,const vecteur & v,gen & y,bool f_is_derivative,GIAC_CONTEXT){
      gen Z=v.front();
      int s=int(v.size());
      vecteur lv(lvar(v));
      vecteur v1(v.begin()+1,v.end());
      vecteur vdiff(s);
      for (int i=0;i<s;++i){
        vdiff[i]=derive(v[i],x,contextptr);
        if (is_undef(vdiff[i]))
  	return false;
      }
      lvar(vdiff,lv);
      lvar(f,lv);
      lvar(g,lv);
      vecteur lv1(lv.begin()+1,lv.end());
      int ss=int(lv.size());
      for (int i=0;i<s;++i)
        vdiff[i]=sym2r(vdiff[i],lv,contextptr);
      // identificateur Zi(" Z");
      // gen Ze(Zi);
      // gen fZ=quotesubst(f,Z,Ze);
      fraction ff(sym2r(f,lv,contextptr));
      polynome fden(gen2poly(ff.den,ss)),fnum(gen2poly(ff.num,ss)),D(gen2poly(plus_one,ss));
      polynome fdenred(fden);
      // compute denominator of y
      fraction gg(sym2r(g,lv,contextptr));
      polynome gden(gen2poly(gg.den,ss)),gnum(gen2poly(gg.num,ss));
      polynome gdenred(gden);
      if (Z.is_symb_of_sommet(at_exp)){
        // if Z is an exp, eliminate it in fden/gden and compute Z in D
        int fdenv=fden.valuation(0),fnumv=fnum.valuation(0),gdenv=gden.valuation(0),gnumv=gnum.valuation(0);
        index_t ii(ss);
        ii[0]=-fdenv;
        fdenred=fdenred.shift(ii);
        ii[0]=-gdenv;
        gdenred=gdenred.shift(ii);
        int alpha=0,beta=fnumv-fdenv,gamma=gnumv-gdenv;
        if (gamma<0){
  	alpha=gamma;
  	if (beta<=0){
  	  if (beta!=0)
  	    alpha=giacmin(0,gamma-beta);
  	  else { // possible cancellation case depend of cst coeff of f
  	    vecteur vtmp(polynome2poly1(fnum,1));
  	    gen f0=r2sym(vtmp[0],lv1,contextptr);
  	    vtmp=polynome2poly1(fdenred,1);
  	    f0=f0/r2sym(vtmp[0],lv1,contextptr);
  	    gen lnc,prim,remains;
  	    if (in_risch(f0,x,v1,Z._SYMBptr->feuille,prim,lnc,remains,contextptr)&&lnc.type==_INT_)
  	      alpha=giacmin(lnc.val,alpha);
  	  }
  	}
        }
        if (gamma>=0 && beta==0){
  	// possible cancellation case depend of cst coeff of f
  	vecteur vtmp(polynome2poly1(fnum,1));
  	gen f0=r2sym(vtmp[0],lv1,contextptr);
  	if (f0.type==_INT_ && f0.val>0)
  	  alpha=-f0.val;
        }
        D=polynome(monomial<gen>(plus_one,-alpha,1,ss)); // Z^(-alpha)
      }
      if (!f_is_derivative){ 
        // Fixme: eliminate residues in fden -> new fdenred
        // Find degree 1 factors of fdenred
        polynome tmpy(fdenred.derivative()),tmpw(fdenred);
        polynome tmpc(simplify(tmpy,tmpw));
        tmpy=tmpy-tmpw.derivative();
        polynome f1=simplify(tmpw,tmpy);
        if (f1.lexsorted_degree()){ /// FIXME
  	polynome f1cofact(fdenred/f1);
  	polynome N1(ss),N2(ss),c(ss);
  	Tabcuv<gen>(f1,f1cofact,fnum,N1,N2,c); // fnum/fdenred=N2/f1+...
  	// find resultant_Z(N-t f1' , f1)
  	polynome p1(ss);
  	polynome pres=rothstein_trager_resultant(N2,f1,vdiff,p1,contextptr);
  	// for each negative integer root of pres, multiply D
  	// find linear factors of pres -> FIXME does not work
  	factorization vden;
  	gen extra_div=1;
  	factor(pres,N1,vden,false,false,false,1,extra_div);
  	factorization::const_iterator f_it=vden.begin(),f_itend=vden.end();
  	// bool ok=true;
  	for (;f_it!=f_itend;++f_it){
  	  int deg=f_it->fact.lexsorted_degree();
  	  if (deg!=1)
  	    continue;
  	  // extract the root
  	  vecteur vtmp=polynome2poly1(f_it->fact,1);
  	  gen root=-r2sym(vtmp.back()/vtmp.front(),lv1,contextptr);
  	  if (root.type==_INT_ && root.val<0){
  	    identificateur t(" t");
  	    gen tmp1=r2sym(p1,mergevecteur(vecteur(1,t),lv),contextptr);
  	    tmp1=subst(tmp1,t,root,false,contextptr);
  	    polynome p1subst(gen2poly(sym2r(tmp1,lv,contextptr),ss));
  	    p1subst=gcd(p1subst,f1);
  	    D=D*pow(p1subst,-root.val);
  	  }
  	}
        }
      }
      polynome c(gcd(fdenred,gdenred));
      D=D*gcd(gdenred,gdenred.derivative())/gcd(c,c.derivative());
      // y'+f*y=g -> new equation is Ry'+Sy=T, compute R=D,S=fD-D',T=gD^2
      fraction dD(diff(D,vdiff));
      if (is_undef(dD.num))
        return false;
      polynome dDnum(gen2poly(dD.num,ss)),dDden(gen2poly(dD.den,ss));
      // then multiply by the lcm of denominators of S and T
      // simplify by gcd of R, S, T
      polynome lcmdeno(gden*fden/gcd(gden,fden)*dDden);
      polynome R(D*lcmdeno),S(fnum*(lcmdeno/fden)*D-dDnum*(lcmdeno/dDden)),T(D*D*gnum*(lcmdeno/gden));
      if (!rischde_simplify(R,S,T))
        return false;
      int rd=R.lexsorted_degree();
      int sd=S.lexsorted_degree();
      int td=T.lexsorted_degree();
      polynome Rr(Tfirstcoeff<gen>(R)),Ss(Tfirstcoeff<gen>(S));
      // compute max possible degree of y: it depends on Z type
      int ydeg=td-sd;
      gen expshift=plus_one; // multiplicative change of variable
      if (Z==x){
        ydeg=td-giacmax(rd-1,sd);
        if (rd-1==sd){ // test whether S_s/R_r is an integer
  	gen n=Ss.coord.front().value/Rr.coord.front().value;
  	if (n.type==_INT_ && n.val>ydeg && (Ss-n*Rr).coord.empty())
  	  ydeg=giacmax(ydeg,n.val);
        }
      }
      else {
        if (Z.type!=_SYMB)
  	return false;
        gen z=Z._SYMBptr->feuille;
        ydeg=td-giacmax(rd,sd);
        if (Z.is_symb_of_sommet(at_exp)){
  	if (rd==sd){ // test whether int S_s/R_r is elementary with n*z coeff
  	  gen lnc,prim,remains,tmp=r2sym(Rr,lv,contextptr)/r2sym(Ss,lv,contextptr);
  	  if (in_risch(tmp,x,v1,z,prim,lnc,remains,contextptr)&&lnc.type==_INT_)
  	    ydeg=giacmax(lnc.val,ydeg);
  	}
        }
        else {
  	if (rd==sd+1){
  	  gen lnc,prim,remains,tmp=r2sym(Rr,lv,contextptr)/r2sym(Ss,lv,contextptr);
  	  // test whether int S_s/R_r is elementary with exp also elementary
  	  if (in_risch(tmp,x,v1,plus_one,prim,lnc,remains,contextptr)){
  	    prim=tsimplify(exp(prim,contextptr),contextptr);
  	    vecteur lv2(lv);
  	    lvar(prim,lv2);
  	    if (lv2==lv){ // the exp is elementary, change variables
  	      expshift=prim;
  	      fraction expshiftf(sym2r(prim,lv,contextptr));
  	      polynome expnum(gen2poly(expshiftf.num,ss)),expden(gen2poly(expshiftf.den,ss));
  	      R=R*Rr*expden;
  	      S=(S*Rr-R*Ss)*expden;
  	      // sd=S.lexsorted_degree();
  	      T=(T*Rr)*expnum;
  	    }
  	  }
  	}
        }
      }
      bool ok=SPDE(R,S,T,x,v,vdiff,lv,ydeg,y,contextptr);
      y=y*expshift/r2sym(D,lv,contextptr);
      return ok;
    }
  
    static pf<gen> hermite_reduce(const pf<gen> & p_cst,const gen & a,const vecteur & v_derivatives,const vecteur & lv,gen & prim,GIAC_CONTEXT){
      pf<gen> p(p_cst);
      if (p.mult<=0){
        prim=gensizeerr(gettext("risch.cc/hermite_reduce"));
        return p;
      }
      if (p.mult==1)
        return p_cst;
      gen expax=exp(r2sym(a,lv,contextptr)*lv.front(),contextptr);
      fraction pprime=diff(p.fact,v_derivatives);
      if (is_undef(pprime.num)){
        prim=pprime.num;
        return p;
      }
      int s=int(lv.size());
      polynome fprime=gen2poly(pprime.num,s),fprimeden=gen2poly(pprime.den,s);
      polynome d(s),u(s),v(s),C(s);
      polynome resnum(s),resden(plus_one,s),numtemp(s),dentemp(s);
      Tegcdpsr(fprime,p.fact,v,u,d); // f*u+f'.num*v=d
      polynome usave(u),vsave(v),pdensave(s);
      // reduce p.den to the cofactor
      p.den=p.den/pow(p.fact,p.mult);
      // now we are integrating p.num/(p.den*f^p.mult)
      while (p.mult>1){
        pdensave=p.den;
        Tegcdtoabcuv(fprime,p.fact,p.num,v,u,d,C); // f*u+f'.num*v=C*p.num
        v=v*fprimeden; // f*u+f'*v=C*p.num
        // p.num/(p.den*f^p.mult)=(f*u+f'*v)/(C*p.den*f^p.mult)
        p.mult--;
        // int(f'/f^(p.mult+1) * v/(C*p.den)*exp(a*x) ) 
        // = 1/p.mult*[-1/f^(p.mult)*v/(C*p.den)*exp(a*x) 
        //   + int(1/f^(p.mult)*(v/C*p.den*exp(a*x))')] 
        // update non integrated term
        if (!diff(v,C*p.den,a,v_derivatives,numtemp,dentemp)){
  	prim=gensizeerr(gettext("risch.cc/hermite_reduce"));
  	return p;
        }
        dentemp=dentemp*p.mult;
        Tfracadd<gen>(numtemp,dentemp,u,C*p.den,p.num,p.den);
        simplify(p.num,p.den);
        // update integrated term
        pdensave=-C*pdensave;
        TsimplifybyTlgcd(pdensave,v);
        pdensave=pdensave*pow(p.fact,p.mult)*p.mult;
        Tfracadd<gen>(resnum,resden,v,pdensave,numtemp,dentemp);
        resnum=numtemp;
        resden=dentemp;
        // finished?
        if (p.mult==1)
  	break;
        // restore Bezout coeffs
        u=usave;
        v=vsave;
      }
      prim=prim+r2sym(resnum,lv,contextptr)/r2sym(resden,lv,contextptr)*expax;
      // restore the factor in p.den
      p.den=p.den*p.fact;
      return pf<gen>(p);
    }
  
    // int(exp(a*x)*coeff,x) where coeff is a rational fraction wrt x
    // polynomial part: recursive call of int
    // remaining part: reduce to square free denom by int by part
    // partial fraction decomp -> Ei
    // Ei with imaginary arguments -> Ei(i*t)=i*(-pi/2)+i*Si(x)+Ci(x)
    static bool integrate_ei(const gen & a,const gen & coeff,const identificateur & x,gen & prim,gen & remains_to_integrate,GIAC_CONTEXT){
      gen expax=exp(a*x,contextptr),ima,rea=re(a,contextptr);
      bool imaneg=false;
      if (is_zero(rea)){
        ima=im(a,contextptr);
        imaneg=is_positive(-ima,contextptr);
      }
      vecteur l(1,x);
      lvar(coeff,l);
      lvar(a,l);
      int s=int(l.size());
      vecteur l1(l.begin()+1,l.end());
      gen r=e2r(coeff,l,contextptr),ar=e2r(a,l,contextptr);
      // cout << "Int " << r << endl;
      gen r_num,r_den;
      fxnd(r,r_num,r_den);
      if (r_num.type==_EXT)
        return false;
      polynome den(gen2poly(r_den,s)),num(gen2poly(r_num,s));
      polynome p_content(lgcd(den));
      // Square-free factorization
      factorization vden(sqff(den/p_content)); 
      vector< pf<gen> > pfdecomp;
      polynome ipnum(s),ipden(s);
      gen ipshift;
      partfrac(num,den,vden,pfdecomp,ipnum,ipden);
      // int( ipnum/ipden*exp(a*x),x)
      int save=calc_mode(contextptr);
      calc_mode(0,contextptr);
      prim += _integrate(gen(makevecteur(expax*r2sym(ipnum/ipden,l,contextptr),x),_SEQ__VECT),contextptr);
      calc_mode(save,contextptr);
      if (is_undef(prim)) return false;
      // Hermite reduction 
      vector< pf<gen> >::iterator it=pfdecomp.begin();
      vector< pf<gen> >::const_iterator itend=pfdecomp.end();
      for (;it!=itend;++it){
        pf<gen> tmp(*it);
        if (it->mult>1){
  	vecteur vl(1,1);
  	tmp=hermite_reduce(*it,ar,vl,l,prim,contextptr);
  	if (is_undef(prim))
  	  return false;
        }
        if (is_zero(tmp.num))
  	continue;
        // ei part for it->num/it->den
        vecteur itnum=polynome2poly1(tmp.num,1);
        vecteur itden=derivative(polynome2poly1(tmp.den,1));
        factorization vden;
        gen extra_div=1;
        factor(tmp.fact,p_content,vden,false,true,true,1,extra_div); // complex+sqrt ok
        factorization::const_iterator f_it=vden.begin(),f_itend=vden.end();
        gen add_prim;
        // bool ok=true;
        for (;f_it!=f_itend;++f_it){
  	int deg=f_it->fact.lexsorted_degree();
  	if (!deg)
  	  continue;
  	if (deg!=1){
  	  remains_to_integrate=remains_to_integrate+expax*r2sym(it->num,l,contextptr)/r2sym(it->den,l,contextptr);
  	  break;
  	}
  	// extract the root
  	vecteur vtmp=polynome2poly1(f_it->fact,1);
  	gen root=-vtmp.back()/vtmp.front();
  	gen rootn=horner(itnum,root);
  	gen rootd=horner(itden,root);
  	root = r2sym(root,l1,contextptr);
  	if (is_zero(im(root,contextptr)) && is_zero(rea)){
  	  prim += (cos(ima*root,contextptr)+cst_i*sin(ima*root,contextptr))*(r2sym(rootn/rootd,l1,contextptr)*(symbolic(at_Ci,(imaneg?(-ima):ima)*(x-root))+(imaneg?(-cst_i):cst_i)*symbolic(at_Si,(imaneg?(-ima):ima)*(x-root))));
  	}
  	else
  	  prim += r2sym(rootn/rootd,l1,contextptr)*exp(a*root,contextptr)*symbolic(at_Ei,a*(x-root));
        }
      }
      return true;
    }
  
    // e is assumed to be a (generallized) poly wrt the top var of v
    // shift is 0 for a poly or the max Laurent exponent for a generallized poly
    static bool risch_poly_part(const vecteur & e,int shift,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT){
      if (v.size()==1){ // the shift must be 1 for integration of a polynomial
        vecteur tmp=e;
        reverse(tmp.begin(),tmp.end());
        tmp=integrate(tmp,1);
        if (is_undef(tmp))
  	return false;
        reverse(tmp.begin(),tmp.end());
        tmp.push_back(zero);
        prim=prim+symb_horner(tmp,x);
        return true;
      } 
      int s=int(e.size()); // degree is s-1
      vecteur v1(v.begin()+1,v.end());
      gen X=v.front();
      if (X.is_symb_of_sommet(at_ln)){
        gen dX=ratnormal(derive(X,x,contextptr),contextptr);
        if (is_undef(dX))
  	return false;
        // log extension
        vecteur eprim(s+1);
        gen lnc,remains;
        for (int j=s-1;j>0;--j){
  	// eprim[s-j] ' =  e[s-1-j] - (j+1) eprim[s-j-1] * v.front()'
  	if (!in_risch(e[s-1-j]-(j+1)*eprim[s-1-j]*dX,x,v1,X._SYMBptr->feuille,eprim[s-j],lnc,remains,contextptr)){
  	  remains_to_integrate=remains_to_integrate+symb_horner(e,X);
  	  return false;
  	}
  	eprim[s-1-j]=eprim[s-1-j]+rdiv(lnc,j+1,contextptr);
        }
        gen prim_add;
        bool ok=in_risch(e[s-1]-eprim[s-1]*dX,x,v1,zero,prim_add,lnc,remains,contextptr);
        prim=prim+prim_add+symb_horner(eprim,X);
        remains_to_integrate=remains_to_integrate+remains;
        return ok;
      }
      // exp extension: we have to solve a Risch diff equation for each power
      gen prim_add,remains;
      // exp extension
      vecteur eprim(s);
      if (!X.is_symb_of_sommet(at_exp))
        return false;
      gen dY=derive(X._SYMBptr->feuille,x,contextptr);
      if (is_undef(dY))
        return false;
      for (int j=s-1;j>=0;--j){
        if (j+shift==0){
  	bool ok=in_risch(e[s-1-j],x,v1,allowed_lnarg,prim_add,lncoeff,remains,contextptr);
  	prim=prim+prim_add;
  	remains_to_integrate=remains_to_integrate+remains;
  	if (!ok &&!is_zero(allowed_lnarg))
  	  return ok;      
        }
        else {
  	if (!risch_desolve((j+shift)*dY,e[s-1-j],x,v1,eprim[s-1-j],true,contextptr)) {
  	  gen coeff=e[s-1-j],pui=j+shift;
  	  gen a,b,c,d;
  	  if (is_zero(allowed_lnarg)&&is_linear_wrt(X._SYMBptr->feuille,x,a,b,contextptr) && lvarx(coeff,x)==vecteur(1,x) && integrate_ei(pui*a,coeff,x,c,d,contextptr)){
  	    // add to prim int(exp(pui*(a*x+b))*coeff) 
  	    // expressed with Ei
  	    prim += exp(pui*b,contextptr)*c;
  	    remains_to_integrate += exp(pui*b,contextptr)*d;
  	    continue;
  	  }
  	  remains_to_integrate=remains_to_integrate+coeff*pow(X,pui,contextptr);
  	  eprim[s-1-j]=0;
  	  if (!is_zero(allowed_lnarg))
  	    return false;
  	}
        }
      }
      prim=prim+symb_horner(eprim,X)*pow(X,shift);
      return true;
    }
  
    // Inner Risch algorithm call, v is the tower extension
    // allowed_lnarg is zero if all ln are allowed or the arg
    // of the allowed ln if only 1 ln is allowed
    // lncoeff will contain this coeff if it's the case
    // prim is the antiderivative
    // returns false if only 1 ln allowed and no elementary integral found 
    static bool in_risch(const gen & e,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT){
      prim=zero;
      lncoeff=zero;
      remains_to_integrate= zero;
      int vs=int(v.size());
      vecteur l(v);
      // add top non-x vars
      lvar(e,l);
      gen diffv=derive(v,x,contextptr);
      if (is_undef(diffv) || diffv.type!=_VECT)
        return false;
      vecteur vx=*diffv._VECTptr;
      lvar(vx,l);
      vecteur vl;
      int s=int(l.size());
      for (int i=0;i<vs;++i)
        vl.push_back(e2r(vx[i],l,contextptr));
      vecteur l1(l.begin()+1,l.end());
      gen r=e2r(e,l,contextptr);
      // cout << "Int " << r << endl;
      gen r_num,r_den;
      fxnd(r,r_num,r_den);
      if (r_num.type==_EXT){
        remains_to_integrate= e;
        return false;
      }
      polynome den(gen2poly(r_den,s)),num(gen2poly(r_num,s));
      polynome p_content(lgcd(den));
      // Square-free factorization
      // FIXME: if ex[ extension, should always treat pole 0 apart
      factorization vden;
      int zeromult=den.coord.back().index.front();
      if (zeromult){
        index_t sh(den.dim);
        sh[0]=-zeromult;
        polynome dens=den.shift(sh);
        vden=sqff(dens/p_content); 
        vden.push_back(facteur<polynome>(polynome(monomial<gen>(1,1,den.dim)),zeromult));
      }
      else
        vden=sqff(den/p_content); 
      vector< pf<gen> > pfdecomp;
      polynome ipnum(s),ipden(s);
      gen ipshift;
      partfrac(num,den,vden,pfdecomp,ipnum,ipden);
      // Hermite/ln reduction and 0 isolation for exp extensions
      vector< pf<gen> >::iterator it=pfdecomp.begin();
      vector< pf<gen> >::const_iterator itend=pfdecomp.end();
      for (;it!=itend;++it){
        if (v.front().is_symb_of_sommet(at_exp) && it->fact.coord.size()==1){
  	// generalized polynomial part, fact must be 1 [1,0,0...]
  	index_t i(s);
  	i.front()=-it->mult;
  	vecteur tmp=polynome2poly1(it->num,1);
  	tmp=*r2sym(tmp,l1,contextptr)._VECTptr;
  	tmp=divvecteur(tmp,r2sym(it->den.shift(i),l,contextptr));
  	if (!risch_poly_part(tmp,-it->mult,x,v,allowed_lnarg,prim,lncoeff,remains_to_integrate,contextptr) && !is_zero(allowed_lnarg))
  	  return false;
        }
        else { // Hermite reduce it->num/it->den
  	pf<gen> tmp(*it);
  	if (it->mult>1){
  	  tmp=hermite_reduce(*it,0,vl,l,prim,contextptr);
  	  if (is_undef(prim))
  	    return false;
  	}
  	if (is_zero(tmp.num))
  	  continue;
  	if (!is_zero(allowed_lnarg)){ // if only 1 log allowed
  	  if (pfdecomp.size()>1)
  	    return false;
  	  // compute u'/u, must be a multiple of it->num/it->den
  	  lncoeff=normal(allowed_lnarg*r2sym(it->num,l,contextptr)/(derive(allowed_lnarg,x,contextptr)*r2sym(it->den,l,contextptr)),contextptr);
  	  if (!is_zero(derive(lncoeff,x,contextptr)))
  	    return false;
  	  continue;
  	}
  	// Logarithmic part: compute resultant of num - t * den
  	polynome p1(s);
  	polynome pres=rothstein_trager_resultant(tmp.num,tmp.den,vl,p1,contextptr);
  	// Factorization, should return 1st order factor independant of
  	// the tower variables
  	factorization vden;
  	gen extra_div=1;
  	factor(pres,p_content,vden,false,withsqrt(contextptr),true,1,extra_div);
  	factorization::const_iterator f_it=vden.begin(),f_itend=vden.end();
  	gen add_prim;
  	bool ok=true;
  	for (;f_it!=f_itend;++f_it){
  	  int deg=f_it->fact.lexsorted_degree();
  	  if (!deg)
  	    continue;
  	  if (deg!=1){
  	    ok=false;
  	    remains_to_integrate=remains_to_integrate+r2sym(it->num,l,contextptr)/r2sym(it->den,l,contextptr);
  	    break;
  	  }
  	  // extract the root
  	  vecteur vtmp=polynome2poly1(f_it->fact,1);
  	  gen root=-r2sym(vtmp.back()/vtmp.front(),l1,contextptr);
  	  if (!is_zero(derive(root,x,contextptr))){
  	    ok=false;
  	    // remains_to_integrate=remains_to_integrate+r2sym(it->num,l,contextptr)/r2sym(it->den,l,contextptr); 
  	    remains_to_integrate=remains_to_integrate+r2sym(tmp.num,l,contextptr)/r2sym(tmp.den,l,contextptr);
  	    break;
  	  }
  	  identificateur t(" t");
  	  gen tmp1=r2sym(p1,mergevecteur(vecteur(1,t),l),contextptr);
  	  tmp1=subst(tmp1,t,root,false,contextptr);
  	  gen tmparg=_gcd(makevecteur(recursive_normal(tmp1,contextptr),recursive_normal(r2sym(it->fact,l,contextptr),contextptr)),contextptr); 
  	  add_prim=add_prim+root*ln(tmparg,contextptr);
  	  // If tmparg is of maximal degree, this will change the integral
  	  // part of the fraction by root*_quo(tmparg',tmparg,X)
  	  ipshift=ipshift-root*_quo(makevecteur(derive(tmparg,x,contextptr),tmparg,recursive_normal(v.front(),contextptr)),contextptr);
  	  if (is_undef(ipshift))
  	    return false;
  	}
  	if (ok)
  	  prim=prim+add_prim;
        } // end else case (non 0 pole, ie Hermite reduction)
      } // end for (all denominateurs)
      // ipnum/ipden = the polynomial part -> integrate it
      simplify(ipnum,ipden);
      vecteur tmp=polynome2poly1(ipnum,1);
      tmp=*r2sym(tmp,l1,contextptr)._VECTptr;
      tmp=divvecteur(tmp,r2sym(ipden,l,contextptr));
      if (tmp.empty())
        tmp=vecteur(1,ipshift);
      else
        tmp.back() += ipshift;
      if (!risch_poly_part(tmp,0,x,v,allowed_lnarg,prim,lncoeff,remains_to_integrate,contextptr) && !is_zero(allowed_lnarg))
        return false;
      return true;
    }
  
  
    static gen risch_lin(const gen & e_orig,const identificateur & x,gen & remains_to_integrate,GIAC_CONTEXT){
      vecteur v;
      gen e=e_orig;
      vecteur vatan=lop(e,at_atan);
      vecteur vln;
      for (int i=0;i<int(vatan.size());++i){
        gen ga=vatan[i];
        gen g=ga._SYMBptr->feuille;
        vln.push_back(ln(ratnormal(rdiv(cst_i+g,cst_i-g),contextptr),contextptr));
        vatan[i]=-2*ga*cst_i;
      }
      if (!risch_tower(x,e,v,contextptr)){
        remains_to_integrate=e_orig;
        return zero;
      }
      if (v.empty())
        return e*x;
      gen prim,lncoeff;
      in_risch(e,x,v,zero,prim,lncoeff,remains_to_integrate,contextptr);
      vector<const unary_function_ptr *> SiCi(1,at_Si);
      SiCi.push_back(at_Ci);
      if (!lop(prim,at_Si).empty()){
        prim=recursive_normal(prim,contextptr);
        if (has_i(prim)){
  	prim=_exp2trig(prim,contextptr);
  	prim=recursive_normal(prim,contextptr);
        }
      }
      if (!vatan.empty())
        prim=ratnormal(subst(recursive_ratnormal(prim,contextptr),vln,vatan,false,contextptr),contextptr);
      if (is_zero(prim))
        remains_to_integrate=e_orig;
      return prim;
    }
  
    gen risch(const gen & e_orig,const identificateur & x,gen & remains_to_integrate,GIAC_CONTEXT){
  #if 0 // def GIAC_HAS_STO_38
      remains_to_integrate=e_orig;
      return 0;
  #endif
      vecteur vexp;
      lin(trig2exp(e_orig,contextptr),vexp,contextptr);
      const_iterateur it=vexp.begin(),itend=vexp.end();
      gen rem,remsum,res;
      for (;it!=itend;){
        gen coeff=*it;
        ++it; 
        gen expo=*it;
        ++it; rem=0;
        res = res+risch_lin(coeff*exp(expo,contextptr),x,rem,contextptr);
        remsum += rem;
      }
      res = res+risch_lin(remsum,x,remains_to_integrate,contextptr);
      if (is_zero(res)){ // perhaps we should derive res and substract it from e_orig
        remains_to_integrate=e_orig;
      }
      else {
        if (!has_i(e_orig) && has_i(remains_to_integrate)){
  	// ?fails for x/(2*i)/(exp(i*x)+exp(-i*x))*2*exp(i*x)+(-i)*x/(exp((-i)*x)^2+1)
  	gen tmp=_exp2trig(remains_to_integrate,contextptr),r,i;
  	reim(tmp,r,i,contextptr);
  	if (is_zero(ratnormal(i,contextptr)))
  	  remains_to_integrate=ratnormal(r,contextptr);
  	else {
  	  res=0;
  	  remains_to_integrate=e_orig;
  	}
        }
      }
      vector<const unary_function_ptr *> SiCiexp(1,at_Si);
      SiCiexp.push_back(at_Ci);
      SiCiexp.push_back(at_exp);
      if (!lop(res,SiCiexp).empty()){
        res=recursive_normal(res,contextptr);
        if (!has_i(e_orig) && has_i(res)){
  	res=_exp2trig(res,contextptr);
  	res=recursive_normal(res,contextptr);
  	if (has_i(res))
  	  res=recursive_normal(re(halftan(res,contextptr),contextptr),contextptr);
        }
      }
      return res;
    }
    
    gen _risch(const gen & g,GIAC_CONTEXT){
      if ( g.type==_STRNG && g.subtype==-1) return  g;
      if (g.type!=_VECT)
        return _risch(vecteur(1,g),contextptr);
      vecteur & v=*g._VECTptr;
      int s=int(v.size());
      if (s>2)
        return _integrate(g,contextptr);
      gen tmp;
      gen var=x__IDNT_e;
      if (s==2 && v.back().type==_IDNT)
        var=v.back();
      gen res=risch(v.front(),*var._IDNTptr,tmp,contextptr);
      if (is_zero(tmp))
        return res;
      return res+symbolic(at_integrate,makesequence(tmp,var)); 
    }
    static const char _risch_s []="risch";
    static define_unary_function_eval (__risch,&_risch,_risch_s);
    define_unary_function_ptr5( at_risch ,alias_at_risch ,&__risch,0,true);
  
    // integer roots of a polynomial
    vecteur iroots(const polynome & p){
      int s=p.dim;
      vecteur zerozero(s-1);
      vecteur P0(polynome2poly1(p/lgcd(p),1));
      vecteur P(P0);
      // eval every coeff at (0,...,0)
      int d=int(P.size());
      for (int i=0;i<d;++i){
        if (P[i].type==_POLY)
  	P[i]=peval(*P[i]._POLYptr,zerozero,0);
      }
      // now search the integer roots of this polynomial
      polynome p0(poly12polynome(P,1,1));
      polynome p1=p0.derivative();
      p1=gcd(p0,p1);
      p0=p0/p1; // p0 is now squarefree with the same roots as initial p0
      // check that all coeffs are integer, if not call normal factorizatio
      vector< monomial<gen> >::const_iterator it=p0.coord.begin(),itend=p0.coord.end();
      vecteur res;
      for (;it!=itend;++it){
  #ifndef HAVE_LIBNTL // with LIBNTL, linearfind does nothing!
        if (!is_integer(it->value)){
  #endif
  	factorization vden;
  	gen extra_div=1;
  	factor(p0,p1,vden,false,false,false,1,extra_div);
  	factorization::const_iterator f_it=vden.begin(),f_itend=vden.end();
  	// bool ok=true;
  	for (;f_it!=f_itend;++f_it){
  	  int deg=f_it->fact.lexsorted_degree();
  	  if (deg!=1)
  	    continue;
  	  // extract the root
  	  vecteur vtmp=polynome2poly1(f_it->fact,1);
  	  gen root=-vtmp.back()/vtmp.front();
  	  if (root.type==_INT_)
  	    res.push_back(root);
  	}
  	return res;
  #ifndef HAVE_LIBNTL
        }
  #endif
      }
      environment * env=new environment;
      polynome temp(1);
      vectpoly v;
      int ithprime=1;
      if (!linearfind(p0,env,temp,v,ithprime)) // FIXME??
        res.clear();// int bound=
      delete env;
      d=int(v.size());
      for (int i=0;i<d;++i){
        vecteur tmpv=polynome2poly1(v[i]);
        if (tmpv.size()!=2)
  	continue;
        gen g=-tmpv[1]/tmpv[0];
        if (g.type!=_INT_)
  	continue;
        gen tmp=horner(P0,g);
        if (is_zero(tmp))
  	res.push_back(g);
      }
      return res;
    }
  #ifndef NO_NAMESPACE_GIAC
  } // namespace giac
  #endif // ndef NO_NAMESPACE_GIAC