// -*- mode:C++ ; compile-command: "g++-3.4 -I.. -g -c risch.cc -DHAVE_CONFIG_H -DIN_GIAC" -*- #include "giacPCH.h" /* * Copyright (C) 2003,14 B. Parisse, Institut Fourier, 38402 St Martin d'Heres * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ using namespace std; #include #include "vector.h" #include #include #include "sym2poly.h" #include "usual.h" #include "intg.h" #include "subst.h" #include "derive.h" #include "lin.h" #include "vecteur.h" #include "gausspol.h" #include "plot.h" #include "prog.h" #include "modpoly.h" #include "series.h" #include "tex.h" #include "ifactor.h" #include "risch.h" #include "misc.h" #include "giacintl.h" #ifndef NO_NAMESPACE_GIAC namespace giac { #endif // ndef NO_NAMESPACE_GIAC static bool in_risch(const gen & e,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT); static bool risch_poly_part(const vecteur & e,int shift,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT); static bool risch_desolve(const gen & f,const gen & g,const identificateur & x,const vecteur & v,gen & y,bool f_is_derivative,GIAC_CONTEXT); // returns true & the tower of extension if g is elementary // false otherwise static bool risch_tower(const identificateur & x,gen &g, vecteur & v,GIAC_CONTEXT){ g=tsimplify(pow2expln(g,x,contextptr),contextptr); v=rlvarx(g,x); const_iterateur it=v.begin(),itend=v.end(); for (;it!=itend;++it){ if (*it==x) continue; if (!it->is_symb_of_sommet(at_exp) && (!it->is_symb_of_sommet(at_ln)) ) return false; } reverse(v.begin(),v.end()); // most complex var at the beginning return true; } // Compute the derivative of a poly or fraction // The derivative wrt to x_i (i-th index) is the i-th element of v // The last element of v should normally be 1 (derivative of x) static fraction diff(const polynome & f,const vecteur & v){ int s=int(v.size()); if (f.dim >::const_iterator it=f.coord.begin(),itend=f.coord.end(); for (;it!=itend;++it){ index_t i= it->index.iref(); fraction tmp(zero); for (int n=0;n(i[n]+1,i)))*(*v[n]._FRACptr); else tmp=tmp+fraction(gen(polynome(monomial(i[n]+1,i)))*v[n]); ++i[n]; } } res=res+it->value*tmp; } return res; } static polynome rothstein_trager_resultant(const polynome & num,const polynome & den,const vecteur & vl,polynome & p1,GIAC_CONTEXT){ int s=num.dim; fraction denprime=diff(den,vl); if (is_undef(denprime.num)){ return gen2poly(denprime.num,s); } p1=num*gen2poly(denprime.den,s); p1=p1.untrunc1(); polynome p2(monomial(plus_one,1,s+1)); p2=p2*gen2poly(denprime.num,s).untrunc1(); p1=p1-p2; p2=den.untrunc1(); // exchange var 1 (parameter t) and 2 (top tower variable) vector i=transposition(0,1,s+1); p1.reorder(i); // Change sign of p1 if first coeff is negative if (is_positive(-p1.coord.front().value,context0)) // ok p1=-p1; p2.reorder(i); polynome pres=Tresultant(p1,p2),pcontent(s); p1.reorder(i); return pres.trunc1(); // pres top var is the parameter t } /* fraction diff(const fraction & f,const vecteur & v){ if (f.num.type!=_POLY){ if (f.den.type!=_POLY) return zero; return -diff(*f.den._POLYptr,v)*fraction(f.num,f.den*f.den); } polynome & num = *f.num._POLYptr; if (f.den.type!=_POLY) return diff(*f.num._POLYptr,v)/f.num; polynome & den = *f.den._POLYptr; return diff(num,v)*f.den-diff(den,v)*fraction(f.num,f.den*f.den); } */ // diff(n/d*exp(a*x)) static bool diff(const polynome & n,const polynome & d,const gen & a,const vecteur & v,polynome & resn,polynome & resd){ int s=n.dim; fraction nprime(diff(n,v)),dprime(diff(d,v)); if (is_undef(nprime.num) || is_undef(dprime.num)) return false; polynome nn(gen2polynome(nprime.num,s)),nd(gen2polynome(nprime.den,s)); polynome dn(gen2polynome(dprime.num,s)),dd(gen2polynome(dprime.den,s)); // ((n/d)*exp(a*x))'=(n'*d-d'*n)/d^2+a*n/d = (nn/nd*d-dn/dd*n)/d^2+a*n/d resn = nn*d*dd-dn*n*nd; resd = d*d*dd*nd; if (!is_zero(a)){ // resn/resd + a*n/d = (resn*aden*d+resd*anum*n)/(d*resd) gen num,den; fxnd(a,num,den); polynome anum=gen2poly(num,resd.dim),aden=gen2poly(den,resd.dim); resn = resn*aden*d + resd*anum*n; resd = resd*d*aden; } simplify(resn,resd); return true; } static bool rischde_simplify(polynome & R,polynome & S, polynome & T){ polynome lcmdeno=gcd(gcd(R,S),T); R=R/lcmdeno; S=S/lcmdeno; T=T/lcmdeno; // if gcd(R,S) does not divide T then there is no solution lcmdeno=gcd(R,S); return lcmdeno.lexsorted_degree()==0; } static bool spde_x(const polynome & S0,const polynome & R0,const polynome & T0,const vecteur & vdiff,polynome & N1,polynome & N2){ // Solve S*N+R*N'=T, R constant poly gen con=gcd(Tcontent(S0),gcd(Tcontent(R0),Tcontent(T0))); polynome S(S0/con),R(R0/con),T(T0/con); int s=T.dim; if (T.coord.empty()){ N1=T; N2=gen2poly(plus_one,s); return true; } if (T.lexsorted_degree() quo/a is the quotient T/S, // it has the same high degree polynomial part as N // We set N=quo/a+ M, where M satisfies // S*M+R*M'=T-S*(quo/a)-R*(quo/a)' // or a*dNden*(S*M+R*M')= a*dNden*(T-S*(quo/a)-R*(quo/a)') // Let R*(quo/a)'=dNnum/dNden // newS=a*dNden*S, newR=a*dNden*R, newT=a*dNden*T-S*quo*dNden-a*dNnum fraction quo_a=fraction(quo,a).normal(); // fraction dN(diff(quo,vdiff)/a-(diff(a,vdiff)*quo)/(a*a)); fraction tmp1(diff(quo,vdiff)); tmp1.den=a*tmp1.den; fraction tmp2(diff(a,vdiff)); if (is_undef(tmp1.num) || is_undef(tmp2.num)) return false; tmp2.num=tmp2.num*quo; tmp2.den=tmp2.den*a*a; fraction dN((tmp1-tmp2).normal()); polynome dNnum(R*gen2poly(dN.num,s)),dNden(gen2poly(dN.den,s)); polynome newT(T*dNden*a-quo*S*dNden-a*dNnum); if (!spde_x(a*dNden*S,a*dNden*R,newT,vdiff,N1,N2)) return false; // M=N1/N2 hence N=quo/a+M=quo/a+N1/N2 fraction Nres=quo_a+fraction(N1,N2); N1=gen2poly(Nres.num,s); N2=gen2poly(Nres.den,s); return true; } static bool SPDE(const polynome &R0,const polynome & S0,const polynome & T0,const identificateur & x,const vecteur & v,const vecteur & vdiff,const vecteur & lv,int ydeg, gen & prim,GIAC_CONTEXT){ // SPDE algorithm to reduce R to a constant polynomial wrt to Z // this will also reduce ydeg, initial equation is Ry'+Sy=T // Principe: if degree(R)>0, find U and V s.t. RU+SV=T and deg(V) R z' + (R' - S) z = U - V' if (T0.coord.empty()){ prim=zero; return true; } polynome R(R0),S(S0),T(T0); int s=int(lv.size()); if (ydeg<0 || !rischde_simplify(R,S,T)) return false; int r=R.lexsorted_degree(); if (R.lexsorted_degree()){ polynome U(s),V(s),c(s); // U,V / R*U+S*V=c*T, c cst wrt main var, degV(S,R,T,V,U,c); fraction dR(diff(R,vdiff)),dV(diff(V,vdiff)); if (is_undef(dR.num)||is_undef(dV.num)) return false; dV.den=dV.den*c; fraction tmpfrac=fraction(V,c*c)*diff(c,vdiff); if (is_undef(tmpfrac.num)) return false; dV=dV-tmpfrac; // now dV=(V/c)' polynome dRnum(gen2poly(dR.num,s)),dRden(gen2poly(dR.den,s)),dVnum(gen2poly(dV.num,s)),dVden(gen2poly(dV.den,s)); polynome newR(R*dRden*dVden),newS((S*dRden+dRnum)*dVden),newT((((U*dVden)/c)-dVnum)*dRden); ydeg=ydeg-r; if(!SPDE(newR,newS,newT,x,v,vdiff,lv,ydeg,prim,contextptr)) return false; prim=r2sym(R,lv,contextptr)*prim+r2sym(V,lv,contextptr)/r2sym(c,lv,contextptr); return true; } // degree(R)=0, Final resolution gen Z=v.front(); if (Z==x || S.lexsorted_degree()){ // S*N+N'=T polynome N1,N2; if (!spde_x(S,R,T,vdiff,N1,N2)) return false; prim=r2sym(N1,lv,contextptr)/r2sym(N2,lv,contextptr); return true; } vecteur v1(v.begin()+1,v.end()); vecteur lv1(lv.begin()+1,lv.end()); vecteur t=polynome2poly1(T,1); t=*r2sym(t,lv1,contextptr)._VECTptr; gen rr=r2sym(R,lv,contextptr); t=divvecteur(t,rr); if (S.coord.empty()){ // solve y'=T -> polynomial part with 1 less var gen lncoeff,remains; return risch_poly_part(t,0,x,v1,plus_one,prim,lncoeff,remains,contextptr); } // for each power solve a risch de with 1 less var if (ydegfeuille; gen dz=derive(z,x,contextptr); if (is_undef(dz)) return false; gen b=r2sym(S,lv,contextptr)/rr; int tdeg=int(t.size())-1; gen previous,sol; bool ok; for (int k=tdeg;k>=0;--k){ if (Z.is_symb_of_sommet(at_exp)) ok=risch_desolve(k*dz+b,t[tdeg-k],x,v1,sol,false,contextptr); else ok=risch_desolve(b,t[tdeg-k]-(k+1)*previous*dz/z,x,v1,sol,false,contextptr); if (!ok) return false; prim=prim+sol*pow(Z,k); previous=sol; } return true; } // solve y'+f*y=g in rational fraction of v // returns true and y or false static bool risch_desolve(const gen & f,const gen & g,const identificateur & x,const vecteur & v,gen & y,bool f_is_derivative,GIAC_CONTEXT){ gen Z=v.front(); int s=int(v.size()); vecteur lv(lvar(v)); vecteur v1(v.begin()+1,v.end()); vecteur vdiff(s); for (int i=0;ifeuille,prim,lnc,remains,contextptr)&&lnc.type==_INT_) alpha=giacmin(lnc.val,alpha); } } } if (gamma>=0 && beta==0){ // possible cancellation case depend of cst coeff of f vecteur vtmp(polynome2poly1(fnum,1)); gen f0=r2sym(vtmp[0],lv1,contextptr); if (f0.type==_INT_ && f0.val>0) alpha=-f0.val; } D=polynome(monomial(plus_one,-alpha,1,ss)); // Z^(-alpha) } if (!f_is_derivative){ // Fixme: eliminate residues in fden -> new fdenred // Find degree 1 factors of fdenred polynome tmpy(fdenred.derivative()),tmpw(fdenred); polynome tmpc(simplify(tmpy,tmpw)); tmpy=tmpy-tmpw.derivative(); polynome f1=simplify(tmpw,tmpy); if (f1.lexsorted_degree()){ /// FIXME polynome f1cofact(fdenred/f1); polynome N1(ss),N2(ss),c(ss); Tabcuv(f1,f1cofact,fnum,N1,N2,c); // fnum/fdenred=N2/f1+... // find resultant_Z(N-t f1' , f1) polynome p1(ss); polynome pres=rothstein_trager_resultant(N2,f1,vdiff,p1,contextptr); // for each negative integer root of pres, multiply D // find linear factors of pres -> FIXME does not work factorization vden; gen extra_div=1; factor(pres,N1,vden,false,false,false,1,extra_div); factorization::const_iterator f_it=vden.begin(),f_itend=vden.end(); // bool ok=true; for (;f_it!=f_itend;++f_it){ int deg=f_it->fact.lexsorted_degree(); if (deg!=1) continue; // extract the root vecteur vtmp=polynome2poly1(f_it->fact,1); gen root=-r2sym(vtmp.back()/vtmp.front(),lv1,contextptr); if (root.type==_INT_ && root.val<0){ identificateur t(" t"); gen tmp1=r2sym(p1,mergevecteur(vecteur(1,t),lv),contextptr); tmp1=subst(tmp1,t,root,false,contextptr); polynome p1subst(gen2poly(sym2r(tmp1,lv,contextptr),ss)); p1subst=gcd(p1subst,f1); D=D*pow(p1subst,-root.val); } } } } polynome c(gcd(fdenred,gdenred)); D=D*gcd(gdenred,gdenred.derivative())/gcd(c,c.derivative()); // y'+f*y=g -> new equation is Ry'+Sy=T, compute R=D,S=fD-D',T=gD^2 fraction dD(diff(D,vdiff)); if (is_undef(dD.num)) return false; polynome dDnum(gen2poly(dD.num,ss)),dDden(gen2poly(dD.den,ss)); // then multiply by the lcm of denominators of S and T // simplify by gcd of R, S, T polynome lcmdeno(gden*fden/gcd(gden,fden)*dDden); polynome R(D*lcmdeno),S(fnum*(lcmdeno/fden)*D-dDnum*(lcmdeno/dDden)),T(D*D*gnum*(lcmdeno/gden)); if (!rischde_simplify(R,S,T)) return false; int rd=R.lexsorted_degree(); int sd=S.lexsorted_degree(); int td=T.lexsorted_degree(); polynome Rr(Tfirstcoeff(R)),Ss(Tfirstcoeff(S)); // compute max possible degree of y: it depends on Z type int ydeg=td-sd; gen expshift=plus_one; // multiplicative change of variable if (Z==x){ ydeg=td-giacmax(rd-1,sd); if (rd-1==sd){ // test whether S_s/R_r is an integer gen n=Ss.coord.front().value/Rr.coord.front().value; if (n.type==_INT_ && n.val>ydeg && (Ss-n*Rr).coord.empty()) ydeg=giacmax(ydeg,n.val); } } else { if (Z.type!=_SYMB) return false; gen z=Z._SYMBptr->feuille; ydeg=td-giacmax(rd,sd); if (Z.is_symb_of_sommet(at_exp)){ if (rd==sd){ // test whether int S_s/R_r is elementary with n*z coeff gen lnc,prim,remains,tmp=r2sym(Rr,lv,contextptr)/r2sym(Ss,lv,contextptr); if (in_risch(tmp,x,v1,z,prim,lnc,remains,contextptr)&&lnc.type==_INT_) ydeg=giacmax(lnc.val,ydeg); } } else { if (rd==sd+1){ gen lnc,prim,remains,tmp=r2sym(Rr,lv,contextptr)/r2sym(Ss,lv,contextptr); // test whether int S_s/R_r is elementary with exp also elementary if (in_risch(tmp,x,v1,plus_one,prim,lnc,remains,contextptr)){ prim=tsimplify(exp(prim,contextptr),contextptr); vecteur lv2(lv); lvar(prim,lv2); if (lv2==lv){ // the exp is elementary, change variables expshift=prim; fraction expshiftf(sym2r(prim,lv,contextptr)); polynome expnum(gen2poly(expshiftf.num,ss)),expden(gen2poly(expshiftf.den,ss)); R=R*Rr*expden; S=(S*Rr-R*Ss)*expden; // sd=S.lexsorted_degree(); T=(T*Rr)*expnum; } } } } } bool ok=SPDE(R,S,T,x,v,vdiff,lv,ydeg,y,contextptr); y=y*expshift/r2sym(D,lv,contextptr); return ok; } static pf hermite_reduce(const pf & p_cst,const gen & a,const vecteur & v_derivatives,const vecteur & lv,gen & prim,GIAC_CONTEXT){ pf p(p_cst); if (p.mult<=0){ prim=gensizeerr(gettext("risch.cc/hermite_reduce")); return p; } if (p.mult==1) return p_cst; gen expax=exp(r2sym(a,lv,contextptr)*lv.front(),contextptr); fraction pprime=diff(p.fact,v_derivatives); if (is_undef(pprime.num)){ prim=pprime.num; return p; } int s=int(lv.size()); polynome fprime=gen2poly(pprime.num,s),fprimeden=gen2poly(pprime.den,s); polynome d(s),u(s),v(s),C(s); polynome resnum(s),resden(plus_one,s),numtemp(s),dentemp(s); Tegcdpsr(fprime,p.fact,v,u,d); // f*u+f'.num*v=d polynome usave(u),vsave(v),pdensave(s); // reduce p.den to the cofactor p.den=p.den/pow(p.fact,p.mult); // now we are integrating p.num/(p.den*f^p.mult) while (p.mult>1){ pdensave=p.den; Tegcdtoabcuv(fprime,p.fact,p.num,v,u,d,C); // f*u+f'.num*v=C*p.num v=v*fprimeden; // f*u+f'*v=C*p.num // p.num/(p.den*f^p.mult)=(f*u+f'*v)/(C*p.den*f^p.mult) p.mult--; // int(f'/f^(p.mult+1) * v/(C*p.den)*exp(a*x) ) // = 1/p.mult*[-1/f^(p.mult)*v/(C*p.den)*exp(a*x) // + int(1/f^(p.mult)*(v/C*p.den*exp(a*x))')] // update non integrated term if (!diff(v,C*p.den,a,v_derivatives,numtemp,dentemp)){ prim=gensizeerr(gettext("risch.cc/hermite_reduce")); return p; } dentemp=dentemp*p.mult; Tfracadd(numtemp,dentemp,u,C*p.den,p.num,p.den); simplify(p.num,p.den); // update integrated term pdensave=-C*pdensave; TsimplifybyTlgcd(pdensave,v); pdensave=pdensave*pow(p.fact,p.mult)*p.mult; Tfracadd(resnum,resden,v,pdensave,numtemp,dentemp); resnum=numtemp; resden=dentemp; // finished? if (p.mult==1) break; // restore Bezout coeffs u=usave; v=vsave; } prim=prim+r2sym(resnum,lv,contextptr)/r2sym(resden,lv,contextptr)*expax; // restore the factor in p.den p.den=p.den*p.fact; return pf(p); } // int(exp(a*x)*coeff,x) where coeff is a rational fraction wrt x // polynomial part: recursive call of int // remaining part: reduce to square free denom by int by part // partial fraction decomp -> Ei // Ei with imaginary arguments -> Ei(i*t)=i*(-pi/2)+i*Si(x)+Ci(x) static bool integrate_ei(const gen & a,const gen & coeff,const identificateur & x,gen & prim,gen & remains_to_integrate,GIAC_CONTEXT){ gen expax=exp(a*x,contextptr),ima,rea=re(a,contextptr); bool imaneg=false; if (is_zero(rea)){ ima=im(a,contextptr); imaneg=is_positive(-ima,contextptr); } vecteur l(1,x); lvar(coeff,l); lvar(a,l); int s=int(l.size()); vecteur l1(l.begin()+1,l.end()); gen r=e2r(coeff,l,contextptr),ar=e2r(a,l,contextptr); // cout << "Int " << r << endl; gen r_num,r_den; fxnd(r,r_num,r_den); if (r_num.type==_EXT) return false; polynome den(gen2poly(r_den,s)),num(gen2poly(r_num,s)); polynome p_content(lgcd(den)); // Square-free factorization factorization vden(sqff(den/p_content)); vector< pf > pfdecomp; polynome ipnum(s),ipden(s); gen ipshift; partfrac(num,den,vden,pfdecomp,ipnum,ipden); // int( ipnum/ipden*exp(a*x),x) int save=calc_mode(contextptr); calc_mode(0,contextptr); prim += _integrate(gen(makevecteur(expax*r2sym(ipnum/ipden,l,contextptr),x),_SEQ__VECT),contextptr); calc_mode(save,contextptr); if (is_undef(prim)) return false; // Hermite reduction vector< pf >::iterator it=pfdecomp.begin(); vector< pf >::const_iterator itend=pfdecomp.end(); for (;it!=itend;++it){ pf tmp(*it); if (it->mult>1){ vecteur vl(1,1); tmp=hermite_reduce(*it,ar,vl,l,prim,contextptr); if (is_undef(prim)) return false; } if (is_zero(tmp.num)) continue; // ei part for it->num/it->den vecteur itnum=polynome2poly1(tmp.num,1); vecteur itden=derivative(polynome2poly1(tmp.den,1)); factorization vden; gen extra_div=1; factor(tmp.fact,p_content,vden,false,true,true,1,extra_div); // complex+sqrt ok factorization::const_iterator f_it=vden.begin(),f_itend=vden.end(); gen add_prim; // bool ok=true; for (;f_it!=f_itend;++f_it){ int deg=f_it->fact.lexsorted_degree(); if (!deg) continue; if (deg!=1){ remains_to_integrate=remains_to_integrate+expax*r2sym(it->num,l,contextptr)/r2sym(it->den,l,contextptr); break; } // extract the root vecteur vtmp=polynome2poly1(f_it->fact,1); gen root=-vtmp.back()/vtmp.front(); gen rootn=horner(itnum,root); gen rootd=horner(itden,root); root = r2sym(root,l1,contextptr); if (is_zero(im(root,contextptr)) && is_zero(rea)){ prim += (cos(ima*root,contextptr)+cst_i*sin(ima*root,contextptr))*(r2sym(rootn/rootd,l1,contextptr)*(symbolic(at_Ci,(imaneg?(-ima):ima)*(x-root))+(imaneg?(-cst_i):cst_i)*symbolic(at_Si,(imaneg?(-ima):ima)*(x-root)))); } else prim += r2sym(rootn/rootd,l1,contextptr)*exp(a*root,contextptr)*symbolic(at_Ei,a*(x-root)); } } return true; } // e is assumed to be a (generallized) poly wrt the top var of v // shift is 0 for a poly or the max Laurent exponent for a generallized poly static bool risch_poly_part(const vecteur & e,int shift,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT){ if (v.size()==1){ // the shift must be 1 for integration of a polynomial vecteur tmp=e; reverse(tmp.begin(),tmp.end()); tmp=integrate(tmp,1); if (is_undef(tmp)) return false; reverse(tmp.begin(),tmp.end()); tmp.push_back(zero); prim=prim+symb_horner(tmp,x); return true; } int s=int(e.size()); // degree is s-1 vecteur v1(v.begin()+1,v.end()); gen X=v.front(); if (X.is_symb_of_sommet(at_ln)){ gen dX=ratnormal(derive(X,x,contextptr),contextptr); if (is_undef(dX)) return false; // log extension vecteur eprim(s+1); gen lnc,remains; for (int j=s-1;j>0;--j){ // eprim[s-j] ' = e[s-1-j] - (j+1) eprim[s-j-1] * v.front()' if (!in_risch(e[s-1-j]-(j+1)*eprim[s-1-j]*dX,x,v1,X._SYMBptr->feuille,eprim[s-j],lnc,remains,contextptr)){ remains_to_integrate=remains_to_integrate+symb_horner(e,X); return false; } eprim[s-1-j]=eprim[s-1-j]+rdiv(lnc,j+1,contextptr); } gen prim_add; bool ok=in_risch(e[s-1]-eprim[s-1]*dX,x,v1,zero,prim_add,lnc,remains,contextptr); prim=prim+prim_add+symb_horner(eprim,X); remains_to_integrate=remains_to_integrate+remains; return ok; } // exp extension: we have to solve a Risch diff equation for each power gen prim_add,remains; // exp extension vecteur eprim(s); if (!X.is_symb_of_sommet(at_exp)) return false; gen dY=derive(X._SYMBptr->feuille,x,contextptr); if (is_undef(dY)) return false; for (int j=s-1;j>=0;--j){ if (j+shift==0){ bool ok=in_risch(e[s-1-j],x,v1,allowed_lnarg,prim_add,lncoeff,remains,contextptr); prim=prim+prim_add; remains_to_integrate=remains_to_integrate+remains; if (!ok &&!is_zero(allowed_lnarg)) return ok; } else { if (!risch_desolve((j+shift)*dY,e[s-1-j],x,v1,eprim[s-1-j],true,contextptr)) { gen coeff=e[s-1-j],pui=j+shift; gen a,b,c,d; if (is_zero(allowed_lnarg)&&is_linear_wrt(X._SYMBptr->feuille,x,a,b,contextptr) && lvarx(coeff,x)==vecteur(1,x) && integrate_ei(pui*a,coeff,x,c,d,contextptr)){ // add to prim int(exp(pui*(a*x+b))*coeff) // expressed with Ei prim += exp(pui*b,contextptr)*c; remains_to_integrate += exp(pui*b,contextptr)*d; continue; } remains_to_integrate=remains_to_integrate+coeff*pow(X,pui,contextptr); eprim[s-1-j]=0; if (!is_zero(allowed_lnarg)) return false; } } } prim=prim+symb_horner(eprim,X)*pow(X,shift); return true; } // Inner Risch algorithm call, v is the tower extension // allowed_lnarg is zero if all ln are allowed or the arg // of the allowed ln if only 1 ln is allowed // lncoeff will contain this coeff if it's the case // prim is the antiderivative // returns false if only 1 ln allowed and no elementary integral found static bool in_risch(const gen & e,const identificateur & x,const vecteur & v,const gen & allowed_lnarg,gen & prim,gen & lncoeff,gen & remains_to_integrate,GIAC_CONTEXT){ prim=zero; lncoeff=zero; remains_to_integrate= zero; int vs=int(v.size()); vecteur l(v); // add top non-x vars lvar(e,l); gen diffv=derive(v,x,contextptr); if (is_undef(diffv) || diffv.type!=_VECT) return false; vecteur vx=*diffv._VECTptr; lvar(vx,l); vecteur vl; int s=int(l.size()); for (int i=0;i(polynome(monomial(1,1,den.dim)),zeromult)); } else vden=sqff(den/p_content); vector< pf > pfdecomp; polynome ipnum(s),ipden(s); gen ipshift; partfrac(num,den,vden,pfdecomp,ipnum,ipden); // Hermite/ln reduction and 0 isolation for exp extensions vector< pf >::iterator it=pfdecomp.begin(); vector< pf >::const_iterator itend=pfdecomp.end(); for (;it!=itend;++it){ if (v.front().is_symb_of_sommet(at_exp) && it->fact.coord.size()==1){ // generalized polynomial part, fact must be 1 [1,0,0...] index_t i(s); i.front()=-it->mult; vecteur tmp=polynome2poly1(it->num,1); tmp=*r2sym(tmp,l1,contextptr)._VECTptr; tmp=divvecteur(tmp,r2sym(it->den.shift(i),l,contextptr)); if (!risch_poly_part(tmp,-it->mult,x,v,allowed_lnarg,prim,lncoeff,remains_to_integrate,contextptr) && !is_zero(allowed_lnarg)) return false; } else { // Hermite reduce it->num/it->den pf tmp(*it); if (it->mult>1){ tmp=hermite_reduce(*it,0,vl,l,prim,contextptr); if (is_undef(prim)) return false; } if (is_zero(tmp.num)) continue; if (!is_zero(allowed_lnarg)){ // if only 1 log allowed if (pfdecomp.size()>1) return false; // compute u'/u, must be a multiple of it->num/it->den lncoeff=normal(allowed_lnarg*r2sym(it->num,l,contextptr)/(derive(allowed_lnarg,x,contextptr)*r2sym(it->den,l,contextptr)),contextptr); if (!is_zero(derive(lncoeff,x,contextptr))) return false; continue; } // Logarithmic part: compute resultant of num - t * den polynome p1(s); polynome pres=rothstein_trager_resultant(tmp.num,tmp.den,vl,p1,contextptr); // Factorization, should return 1st order factor independant of // the tower variables factorization vden; gen extra_div=1; factor(pres,p_content,vden,false,withsqrt(contextptr),true,1,extra_div); factorization::const_iterator f_it=vden.begin(),f_itend=vden.end(); gen add_prim; bool ok=true; for (;f_it!=f_itend;++f_it){ int deg=f_it->fact.lexsorted_degree(); if (!deg) continue; if (deg!=1){ ok=false; remains_to_integrate=remains_to_integrate+r2sym(it->num,l,contextptr)/r2sym(it->den,l,contextptr); break; } // extract the root vecteur vtmp=polynome2poly1(f_it->fact,1); gen root=-r2sym(vtmp.back()/vtmp.front(),l1,contextptr); if (!is_zero(derive(root,x,contextptr))){ ok=false; // remains_to_integrate=remains_to_integrate+r2sym(it->num,l,contextptr)/r2sym(it->den,l,contextptr); remains_to_integrate=remains_to_integrate+r2sym(tmp.num,l,contextptr)/r2sym(tmp.den,l,contextptr); break; } identificateur t(" t"); gen tmp1=r2sym(p1,mergevecteur(vecteur(1,t),l),contextptr); tmp1=subst(tmp1,t,root,false,contextptr); gen tmparg=_gcd(makevecteur(recursive_normal(tmp1,contextptr),recursive_normal(r2sym(it->fact,l,contextptr),contextptr)),contextptr); add_prim=add_prim+root*ln(tmparg,contextptr); // If tmparg is of maximal degree, this will change the integral // part of the fraction by root*_quo(tmparg',tmparg,X) ipshift=ipshift-root*_quo(makevecteur(derive(tmparg,x,contextptr),tmparg,recursive_normal(v.front(),contextptr)),contextptr); if (is_undef(ipshift)) return false; } if (ok) prim=prim+add_prim; } // end else case (non 0 pole, ie Hermite reduction) } // end for (all denominateurs) // ipnum/ipden = the polynomial part -> integrate it simplify(ipnum,ipden); vecteur tmp=polynome2poly1(ipnum,1); tmp=*r2sym(tmp,l1,contextptr)._VECTptr; tmp=divvecteur(tmp,r2sym(ipden,l,contextptr)); if (tmp.empty()) tmp=vecteur(1,ipshift); else tmp.back() += ipshift; if (!risch_poly_part(tmp,0,x,v,allowed_lnarg,prim,lncoeff,remains_to_integrate,contextptr) && !is_zero(allowed_lnarg)) return false; return true; } static gen risch_lin(const gen & e_orig,const identificateur & x,gen & remains_to_integrate,GIAC_CONTEXT){ vecteur v; gen e=e_orig; vecteur vatan=lop(e,at_atan); vecteur vln; for (int i=0;ifeuille; vln.push_back(ln(ratnormal(rdiv(cst_i+g,cst_i-g),contextptr),contextptr)); vatan[i]=-2*ga*cst_i; } if (!risch_tower(x,e,v,contextptr)){ remains_to_integrate=e_orig; return zero; } if (v.empty()) return e*x; gen prim,lncoeff; in_risch(e,x,v,zero,prim,lncoeff,remains_to_integrate,contextptr); vector SiCi(1,at_Si); SiCi.push_back(at_Ci); if (!lop(prim,at_Si).empty()){ prim=recursive_normal(prim,contextptr); if (has_i(prim)){ prim=_exp2trig(prim,contextptr); prim=recursive_normal(prim,contextptr); } } if (!vatan.empty()) prim=ratnormal(subst(recursive_ratnormal(prim,contextptr),vln,vatan,false,contextptr),contextptr); if (is_zero(prim)) remains_to_integrate=e_orig; return prim; } gen risch(const gen & e_orig,const identificateur & x,gen & remains_to_integrate,GIAC_CONTEXT){ #if 0 // def GIAC_HAS_STO_38 remains_to_integrate=e_orig; return 0; #endif vecteur vexp; lin(trig2exp(e_orig,contextptr),vexp,contextptr); const_iterateur it=vexp.begin(),itend=vexp.end(); gen rem,remsum,res; for (;it!=itend;){ gen coeff=*it; ++it; gen expo=*it; ++it; rem=0; res = res+risch_lin(coeff*exp(expo,contextptr),x,rem,contextptr); remsum += rem; } res = res+risch_lin(remsum,x,remains_to_integrate,contextptr); if (is_zero(res)){ // perhaps we should derive res and substract it from e_orig remains_to_integrate=e_orig; } else { if (!has_i(e_orig) && has_i(remains_to_integrate)){ // ?fails for x/(2*i)/(exp(i*x)+exp(-i*x))*2*exp(i*x)+(-i)*x/(exp((-i)*x)^2+1) gen tmp=_exp2trig(remains_to_integrate,contextptr),r,i; reim(tmp,r,i,contextptr); if (is_zero(ratnormal(i,contextptr))) remains_to_integrate=ratnormal(r,contextptr); else { res=0; remains_to_integrate=e_orig; } } } vector SiCiexp(1,at_Si); SiCiexp.push_back(at_Ci); SiCiexp.push_back(at_exp); if (!lop(res,SiCiexp).empty()){ res=recursive_normal(res,contextptr); if (!has_i(e_orig) && has_i(res)){ res=_exp2trig(res,contextptr); res=recursive_normal(res,contextptr); if (has_i(res)) res=recursive_normal(re(halftan(res,contextptr),contextptr),contextptr); } } return res; } gen _risch(const gen & g,GIAC_CONTEXT){ if ( g.type==_STRNG && g.subtype==-1) return g; if (g.type!=_VECT) return _risch(vecteur(1,g),contextptr); vecteur & v=*g._VECTptr; int s=int(v.size()); if (s>2) return _integrate(g,contextptr); gen tmp; gen var=x__IDNT_e; if (s==2 && v.back().type==_IDNT) var=v.back(); gen res=risch(v.front(),*var._IDNTptr,tmp,contextptr); if (is_zero(tmp)) return res; return res+symbolic(at_integrate,makesequence(tmp,var)); } static const char _risch_s []="risch"; static define_unary_function_eval (__risch,&_risch,_risch_s); define_unary_function_ptr5( at_risch ,alias_at_risch ,&__risch,0,true); // integer roots of a polynomial vecteur iroots(const polynome & p){ int s=p.dim; vecteur zerozero(s-1); vecteur P0(polynome2poly1(p/lgcd(p),1)); vecteur P(P0); // eval every coeff at (0,...,0) int d=int(P.size()); for (int i=0;i >::const_iterator it=p0.coord.begin(),itend=p0.coord.end(); vecteur res; for (;it!=itend;++it){ #ifndef HAVE_LIBNTL // with LIBNTL, linearfind does nothing! if (!is_integer(it->value)){ #endif factorization vden; gen extra_div=1; factor(p0,p1,vden,false,false,false,1,extra_div); factorization::const_iterator f_it=vden.begin(),f_itend=vden.end(); // bool ok=true; for (;f_it!=f_itend;++f_it){ int deg=f_it->fact.lexsorted_degree(); if (deg!=1) continue; // extract the root vecteur vtmp=polynome2poly1(f_it->fact,1); gen root=-vtmp.back()/vtmp.front(); if (root.type==_INT_) res.push_back(root); } return res; #ifndef HAVE_LIBNTL } #endif } environment * env=new environment; polynome temp(1); vectpoly v; int ithprime=1; if (!linearfind(p0,env,temp,v,ithprime)) // FIXME?? res.clear();// int bound= delete env; d=int(v.size()); for (int i=0;i