Blame view

epsilon-master/apps/code/script_template.cpp 2.12 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  #include "script_template.h"
  
  namespace Code {
  
  constexpr ScriptTemplate emptyScriptTemplate(".py", R"(from math import *
  )");
  
  constexpr ScriptTemplate factorialScriptTemplate("factorial.py", R"(def factorial(n):
    if n == 0:
      return 1
    else:
      return n * factorial(n-1))");
  
  constexpr ScriptTemplate fibonacciScriptTemplate("fibonacci.py", R"(def fibo(n):
    a=0
    b=1
    for i in range(1,n+1):
      c=a+b
      a=b
      b=c
    return a
  
  def fibo2(n):
    if n==0:
      return 0
    elif n==1 or n==2:
      return 1
    return fibo2(n-1)+fibo2(n-2))");
  
  constexpr ScriptTemplate mandelbrotScriptTemplate("mandelbrot.py", R"(# This script draws a Mandelbrot fractal set
  # N_iteration: degree of precision
  import kandinsky
  def mandelbrot(N_iteration):
    for x in range(320):
      for y in range(222):
  # Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i)
        z = complex(0,0)
  # Rescale to fit the drawing screen 320x222
        c = complex(3.5*x/319-2.5, -2.5*y/221+1.25)
        i = 0
        while (i < N_iteration) and abs(z) < 2:
          i = i + 1
          z = z*z+c
  # Choose the color of the dot from the Mandelbrot sequence
        rgb = int(255*i/N_iteration)
        col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25))
  # Draw a pixel colored in 'col' at position (x,y)
        kandinsky.set_pixel(x,y,col))");
  
  constexpr ScriptTemplate polynomialScriptTemplate("polynomial.py", R"(from math import *
  # roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0
  def roots(a,b,c):
    delta = b*b-4*a*c
    if delta == 0:
      return -b/(2*a)
    elif delta > 0:
      x_1 = (-b-sqrt(delta))/(2*a)
      x_2 = (-b+sqrt(delta))/(2*a)
      return x_1, x_2
    else:
      return None)");
  
  const ScriptTemplate * ScriptTemplate::Empty() {
    return &emptyScriptTemplate;
  }
  
  const ScriptTemplate * ScriptTemplate::Factorial() {
    return &factorialScriptTemplate;
  }
  
  const ScriptTemplate * ScriptTemplate::Fibonacci() {
    return &fibonacciScriptTemplate;
  }
  
  const ScriptTemplate * ScriptTemplate::Mandelbrot() {
    return &mandelbrotScriptTemplate;
  }
  
  const ScriptTemplate * ScriptTemplate::Polynomial() {
    return &polynomialScriptTemplate;
  }
  
  }