#include "script_template.h" namespace Code { constexpr ScriptTemplate emptyScriptTemplate(".py", R"(from math import * )"); constexpr ScriptTemplate factorialScriptTemplate("factorial.py", R"(def factorial(n): if n == 0: return 1 else: return n * factorial(n-1))"); constexpr ScriptTemplate fibonacciScriptTemplate("fibonacci.py", R"(def fibo(n): a=0 b=1 for i in range(1,n+1): c=a+b a=b b=c return a def fibo2(n): if n==0: return 0 elif n==1 or n==2: return 1 return fibo2(n-1)+fibo2(n-2))"); constexpr ScriptTemplate mandelbrotScriptTemplate("mandelbrot.py", R"(# This script draws a Mandelbrot fractal set # N_iteration: degree of precision import kandinsky def mandelbrot(N_iteration): for x in range(320): for y in range(222): # Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i) z = complex(0,0) # Rescale to fit the drawing screen 320x222 c = complex(3.5*x/319-2.5, -2.5*y/221+1.25) i = 0 while (i < N_iteration) and abs(z) < 2: i = i + 1 z = z*z+c # Choose the color of the dot from the Mandelbrot sequence rgb = int(255*i/N_iteration) col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25)) # Draw a pixel colored in 'col' at position (x,y) kandinsky.set_pixel(x,y,col))"); constexpr ScriptTemplate polynomialScriptTemplate("polynomial.py", R"(from math import * # roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0 def roots(a,b,c): delta = b*b-4*a*c if delta == 0: return -b/(2*a) elif delta > 0: x_1 = (-b-sqrt(delta))/(2*a) x_2 = (-b+sqrt(delta))/(2*a) return x_1, x_2 else: return None)"); const ScriptTemplate * ScriptTemplate::Empty() { return &emptyScriptTemplate; } const ScriptTemplate * ScriptTemplate::Factorial() { return &factorialScriptTemplate; } const ScriptTemplate * ScriptTemplate::Fibonacci() { return &fibonacciScriptTemplate; } const ScriptTemplate * ScriptTemplate::Mandelbrot() { return &mandelbrotScriptTemplate; } const ScriptTemplate * ScriptTemplate::Polynomial() { return &polynomialScriptTemplate; } }