6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
#include <poincare/cosine.h>
#include <poincare/hyperbolic_cosine.h>
#include <poincare/complex.h>
#include <poincare/symbol.h>
#include <poincare/rational.h>
#include <poincare/multiplication.h>
#include <poincare/simplification_engine.h>
#include <ion.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type Cosine::type() const {
return Type::Cosine;
}
Expression * Cosine::clone() const {
Cosine * a = new Cosine(m_operands, true);
return a;
}
Expression * Cosine::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
Expression * op = editableOperand(0);
if (op->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
return Trigonometry::shallowReduceDirectFunction(this, context, angleUnit);
}
template<typename T>
Complex<T> Cosine::computeOnComplex(const Complex<T> c, AngleUnit angleUnit) {
assert(angleUnit != AngleUnit::Default);
if (c.b() == 0) {
T input = c.a();
if (angleUnit == AngleUnit::Degree) {
input *= M_PI/180.0f;
}
T result = std::cos(input);
/* Cheat: openbsd trigonometric functions (cos, sin & tan) are numerical
* implementation and thus are approximative. The error epsilon is ~1E-7
* on float and ~1E-15 on double. In order to avoid weird results as
* cos(90) = 6E-17, we neglect the result when its ratio with the argument
* (pi in the exemple) is smaller than epsilon.
* We can't do that for all evaluation as the user can operate on values as
* small as 1E-308 (in double) and most results still be correct. */
if (input != 0 && std::fabs(result/input) <= epsilon<T>()) {
return Complex<T>::Float(0);
}
return Complex<T>::Float(result);
}
Complex<T> arg = Complex<T>::Cartesian(-c.b(), c.a());
return HyperbolicCosine::computeOnComplex(arg, angleUnit);
}
}
|