#include #include #include #include #include #include #include #include extern "C" { #include } #include namespace Poincare { Expression::Type Cosine::type() const { return Type::Cosine; } Expression * Cosine::clone() const { Cosine * a = new Cosine(m_operands, true); return a; } Expression * Cosine::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } #if MATRIX_EXACT_REDUCING Expression * op = editableOperand(0); if (op->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } #endif return Trigonometry::shallowReduceDirectFunction(this, context, angleUnit); } template Complex Cosine::computeOnComplex(const Complex c, AngleUnit angleUnit) { assert(angleUnit != AngleUnit::Default); if (c.b() == 0) { T input = c.a(); if (angleUnit == AngleUnit::Degree) { input *= M_PI/180.0f; } T result = std::cos(input); /* Cheat: openbsd trigonometric functions (cos, sin & tan) are numerical * implementation and thus are approximative. The error epsilon is ~1E-7 * on float and ~1E-15 on double. In order to avoid weird results as * cos(90) = 6E-17, we neglect the result when its ratio with the argument * (pi in the exemple) is smaller than epsilon. * We can't do that for all evaluation as the user can operate on values as * small as 1E-308 (in double) and most results still be correct. */ if (input != 0 && std::fabs(result/input) <= epsilon()) { return Complex::Float(0); } return Complex::Float(result); } Complex arg = Complex::Cartesian(-c.b(), c.a()); return HyperbolicCosine::computeOnComplex(arg, angleUnit); } }