Blame view

build1/epsilon-master/poincare/src/trigonometry.cpp 17.2 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  #include <poincare/trigonometry.h>
  #include <poincare/hyperbolic_cosine.h>
  #include <poincare/symbol.h>
  #include <poincare/preferences.h>
  #include <poincare/undefined.h>
  #include <poincare/rational.h>
  #include <poincare/multiplication.h>
  #include <poincare/subtraction.h>
  #include <poincare/derivative.h>
  #include <poincare/decimal.h>
  #include <ion.h>
  extern "C" {
  #include <assert.h>
  }
  #include <cmath>
  #include <float.h>
  
  namespace Poincare {
  
  float Trigonometry::characteristicXRange(const Expression * e, Context & context, Expression::AngleUnit angleUnit) {
    assert(e->numberOfOperands() == 1);
    const Expression * op = e->operand(0);
    int d = op->polynomialDegree('x');
    // op is not linear so we cannot not easily find an interesting range
    if (d < 0 || d > 1) {
      return op->characteristicXRange(context, angleUnit);
    }
    // The expression e is x-independent
    if (d == 0) {
      return 0.0f;
    }
    // e has the form cos/sin/tan(ax+b) so it is periodic of period 2*Pi/a
    assert(d == 1);
    /* To compute a, the slope of the expression op, we compute the derivative of
     * op for any x value. */
    Poincare::Approximation<float> x(1.0f);
    const Poincare::Expression * args[2] = {op, &x};
    Poincare::Derivative derivative(args, true);
    float a = derivative.approximateToScalar<float>(context, angleUnit);
    float pi = angleUnit == Expression::AngleUnit::Radian ? M_PI : 180.0f;
    return 2.0f*pi/std::fabs(a);
  }
  
  Expression * Trigonometry::shallowReduceDirectFunction(Expression * e, Context& context, Expression::AngleUnit angleUnit) {
    assert(e->type() == Expression::Type::Sine || e->type() == Expression::Type::Cosine || e->type() == Expression::Type::Tangent);
    Expression * lookup = Trigonometry::table(e->operand(0), e->type(), context, angleUnit);
    if (lookup != nullptr) {
      return e->replaceWith(lookup, true);
    }
    Expression::Type correspondingType = e->type() == Expression::Type::Cosine ? Expression::Type::ArcCosine : (e->type() == Expression::Type::Sine ? Expression::Type::ArcSine : Expression::Type::ArcTangent);
    if (e->operand(0)->type() == correspondingType) {
      return e->replaceWith(e->editableOperand(0)->editableOperand(0), true);
    }
    if (e->operand(0)->sign() == Expression::Sign::Negative) {
      Expression * op = e->editableOperand(0);
      Expression * newOp = op->setSign(Expression::Sign::Positive, context, angleUnit);
      newOp->shallowReduce(context, angleUnit);
      if (e->type() == Expression::Type::Cosine) {
        return e->shallowReduce(context, angleUnit);
      } else {
        Multiplication * m = new Multiplication(new Rational(-1), e->clone(), false);
        m->editableOperand(1)->shallowReduce(context, angleUnit);
        return e->replaceWith(m, true)->shallowReduce(context, angleUnit);
      }
    }
    if ((angleUnit == Expression::AngleUnit::Radian && e->operand(0)->type() == Expression::Type::Multiplication && e->operand(0)->numberOfOperands() == 2 && e->operand(0)->operand(1)->type() == Expression::Type::Symbol && static_cast<const Symbol *>(e->operand(0)->operand(1))->name() == Ion::Charset::SmallPi && e->operand(0)->operand(0)->type() == Expression::Type::Rational) || (angleUnit == Expression::AngleUnit::Degree && e->operand(0)->type() == Expression::Type::Rational)) {
      Rational * r = angleUnit == Expression::AngleUnit::Radian ? static_cast<Rational *>(e->editableOperand(0)->editableOperand(0)) : static_cast<Rational *>(e->editableOperand(0));
      int unaryCoefficient = 1; // store 1 or -1
      // Replace argument in [0, Pi/2[ or [0, 90[
      Integer divisor = angleUnit == Expression::AngleUnit::Radian ? r->denominator() : Integer::Multiplication(r->denominator(), Integer(90));
      Integer dividand = angleUnit == Expression::AngleUnit::Radian ? Integer::Addition(r->numerator(), r->numerator()) : r->numerator();
      if (divisor.isLowerThan(dividand)) {
        Integer piDivisor = angleUnit == Expression::AngleUnit::Radian ? r->denominator() : Integer::Multiplication(r->denominator(), Integer(180));
        IntegerDivision div = Integer::Division(r->numerator(), piDivisor);
        dividand = angleUnit == Expression::AngleUnit::Radian ? Integer::Addition(div.remainder, div.remainder) : div.remainder;
        if (divisor.isLowerThan(dividand)) {
          div.remainder = Integer::Subtraction(piDivisor, div.remainder);
          if (e->type() == Expression::Type::Cosine || e->type() == Expression::Type::Tangent) {
            unaryCoefficient *= -1;
          }
        }
        Rational * newR = new Rational(div.remainder, r->denominator());
        Expression * rationalParent = angleUnit == Expression::AngleUnit::Radian ? e->editableOperand(0) : e;
        rationalParent->replaceOperand(r, newR, true);
        e->editableOperand(0)->shallowReduce(context, angleUnit);
        if (Integer::Division(div.quotient, Integer(2)).remainder.isOne() && e->type() != Expression::Type::Tangent) {
          unaryCoefficient *= -1;
        }
        Expression * simplifiedCosine = e->shallowReduce(context, angleUnit); // recursive
        Multiplication * m = new Multiplication(new Rational(unaryCoefficient), simplifiedCosine->clone(), false);
        return simplifiedCosine->replaceWith(m, true)->shallowReduce(context, angleUnit);
      }
      assert(r->sign() == Expression::Sign::Positive);
      assert(!divisor.isLowerThan(dividand));
    }
    return e;
  }
  
  bool Trigonometry::ExpressionIsEquivalentToTangent(const Expression * e) {
    assert(Expression::Type::Power < Expression::Type::Sine);
    if (e->type() == Expression::Type::Multiplication && e->operand(1)->type() == Expression::Type::Sine && e->operand(0)->type() == Expression::Type::Power && e->operand(0)->operand(0)->type() == Expression::Type::Cosine && e->operand(0)->operand(1)->type() == Expression::Type::Rational && static_cast<const Rational *>(e->operand(0)->operand(1))->isMinusOne()) {
      return true;
    }
    return false;
  }
  
  Expression * Trigonometry::shallowReduceInverseFunction(Expression * e, Context& context, Expression::AngleUnit angleUnit) {
    assert(e->type() == Expression::Type::ArcCosine || e->type() == Expression::Type::ArcSine || e->type() == Expression::Type::ArcTangent);
    Expression::Type correspondingType = e->type() == Expression::Type::ArcCosine ? Expression::Type::Cosine : (e->type() == Expression::Type::ArcSine ? Expression::Type::Sine : Expression::Type::Tangent);
    float pi = angleUnit == Expression::AngleUnit::Radian ? M_PI : 180;
    if (e->operand(0)->type() == correspondingType) {
      float trigoOp = e->operand(0)->operand(0)->approximateToScalar<float>(context, angleUnit);
      if ((e->type() == Expression::Type::ArcCosine && trigoOp >= 0.0f && trigoOp <= pi) ||
          (e->type() == Expression::Type::ArcSine && trigoOp >= -pi/2.0f && trigoOp <= pi/2.0f) ||
          (e->type() == Expression::Type::ArcTangent && trigoOp >= -pi/2.0f && trigoOp <= pi/2.0f)) {
        return e->replaceWith(e->editableOperand(0)->editableOperand(0), true);
      }
    }
    // Special case for arctan(sin(x)/cos(x))
    if (e->type() == Expression::Type::ArcTangent && ExpressionIsEquivalentToTangent(e->operand(0))) {
      float trigoOp = e->operand(0)->operand(1)->operand(0)->approximateToScalar<float>(context, angleUnit);
      if (trigoOp >= -pi/2.0f && trigoOp <= pi/2.0f) {
        return e->replaceWith(e->editableOperand(0)->editableOperand(1)->editableOperand(0), true);
      }
    }
    Expression * lookup = Trigonometry::table(e->operand(0), e->type(), context, angleUnit);
    if (lookup != nullptr) {
      return e->replaceWith(lookup, true);
    }
    // arccos(-x) = Pi-arcos(x), arcsin(-x) = -arcsin(x), arctan(-x)=-arctan(x)
    if (e->operand(0)->sign() == Expression::Sign::Negative || (e->operand(0)->type() == Expression::Type::Multiplication && e->operand(0)->operand(0)->type() == Expression::Type::Rational && static_cast<const Rational *>(e->operand(0)->operand(0))->isMinusOne())) {
      Expression * op = e->editableOperand(0);
      if (e->operand(0)->sign() == Expression::Sign::Negative) {
        Expression * newOp = op->setSign(Expression::Sign::Positive, context, angleUnit);
        newOp->shallowReduce(context, angleUnit);
      } else {
        ((Multiplication *)op)->removeOperand(op->editableOperand(0), true);
        op->shallowReduce(context, angleUnit);
      }
      if (e->type() == Expression::Type::ArcCosine) {
        Expression * pi = angleUnit == Expression::AngleUnit::Radian ? static_cast<Expression *>(new Symbol(Ion::Charset::SmallPi)) : static_cast<Expression *>(new Rational(180));
        Subtraction * s = new Subtraction(pi, e->clone(), false);
        s->editableOperand(1)->shallowReduce(context, angleUnit);
        return e->replaceWith(s, true)->shallowReduce(context, angleUnit);
      } else {
        Multiplication * m = new Multiplication(new Rational(-1), e->clone(), false);
        m->editableOperand(1)->shallowReduce(context, angleUnit);
        return e->replaceWith(m, true)->shallowReduce(context, angleUnit);
      }
    }
  
    return e;
  }
  
  static_assert('\x8A' == Ion::Charset::SmallPi, "Unicode error");
  constexpr const char * cheatTable[Trigonometry::k_numberOfEntries][5] =
  {{"-90",    "\x8A*(-2)^(-1)",    "",                                   "-1",                                 "undef"},
   {"-75",    "\x8A*(-5)*12^(-1)", "",                                   "(-1)*6^(1/2)*4^(-1)-2^(1/2)*4^(-1)", "-(3^(1/2)+2)"},
   {"-72",    "\x8A*2*(-5)^(-1)",  "",                                   "-(5/8+5^(1/2)/8)^(1/2)",             "-(5+2*5^(1/2))^(1/2)"},
   {"-135/2", "\x8A*(-3)*8^(-1)",  "",                                   "-(2+2^(1/2))^(1/2)*2^(-1)",          "-1-2^(1/2)"},
   {"-60",    "\x8A*(-3)^(-1)",    "",                                   "-3^(1/2)*2^(-1)",                    "-3^(1/2)"},
   {"-54",    "\x8A*(-3)*10^(-1)", "",                                   "4^(-1)*(-1-5^(1/2))",                "-(1+2*5^(-1/2))^(1/2)"},
   {"-45",    "\x8A*(-4)^(-1)",    "",                                   "(-1)*(2^(-1/2))",                    "-1"},
   {"-36",    "\x8A*(-5)^(-1)",    "",                                   "-(5/8-5^(1/2)/8)^(1/2)",             "-(5-2*5^(1/2))^(1/2)"},
   {"-30",    "\x8A*(-6)^(-1)",    "",                                   "-0.5",                               "-3^(-1/2)"},
   {"-45/2",  "\x8A*(-8)^(-1)",    "",                                   "(2-2^(1/2))^(1/2)*(-2)^(-1)",        "1-2^(1/2)"},
   {"-18",    "\x8A*(-10)^(-1)",   "",                                   "4^(-1)*(1-5^(1/2))",                 "-(1-2*5^(-1/2))^(1/2)"},
   {"-15",    "\x8A*(-12)^(-1)",   "",                                   "-6^(1/2)*4^(-1)+2^(1/2)*4^(-1)",     "3^(1/2)-2"},
   {"0",      "0",                 "1",                                  "0",                                  "0"},
   {"15",     "\x8A*12^(-1)",      "6^(1/2)*4^(-1)+2^(1/2)*4^(-1)",      "6^(1/2)*4^(-1)+2^(1/2)*(-4)^(-1)",   "-(3^(1/2)-2)"},
   {"18",     "\x8A*10^(-1)",      "(5/8+5^(1/2)/8)^(1/2)",              "4^(-1)*(5^(1/2)-1)",                 "(1-2*5^(-1/2))^(1/2)"},
   {"45/2",   "\x8A*8^(-1)",       "(2+2^(1/2))^(1/2)*2^(-1)",           "(2-2^(1/2))^(1/2)*2^(-1)",           "2^(1/2)-1"},
   {"30",     "\x8A*6^(-1)",       "3^(1/2)*2^(-1)",                     "0.5",                                "3^(-1/2)"},
   {"36",     "\x8A*5^(-1)",       "(5^(1/2)+1)*4^(-1)",                 "(5/8-5^(1/2)/8)^(1/2)",              "(5-2*5^(1/2))^(1/2)"},
   {"45",     "\x8A*4^(-1)",       "2^(-1/2)",                           "2^(-1/2)",                           "1"},
   {"54",     "\x8A*3*10^(-1)",    "(5/8-5^(1/2)/8)^(1/2)",              "4^(-1)*(5^(1/2)+1)",                 "(1+2*5^(-1/2))^(1/2)"},
   {"60",     "\x8A*3^(-1)",       "0.5",                                "3^(1/2)*2^(-1)",                     "3^(1/2)"},
   {"135/2",  "\x8A*3*8^(-1)",     "(2-2^(1/2))^(1/2)*2^(-1)",           "(2+2^(1/2))^(1/2)*2^(-1)",           "1+2^(1/2)"},
   {"72",     "\x8A*2*5^(-1)",     "(5^(1/2)-1)*4^(-1)",                 "(5/8+5^(1/2)/8)^(1/2)",              "(5+2*5^(1/2))^(1/2)"},
   {"75",     "\x8A*5*12^(-1)",    "6^(1/2)*4^(-1)+2^(1/2)*(-4)^(-1)",   "6^(1/2)*4^(-1)+2^(1/2)*4^(-1)",      "3^(1/2)+2"},
   {"90",     "\x8A*2^(-1)",       "0",                                  "1",                                  "undef"},
   {"105",    "\x8A*7*12^(-1)",    "-6^(1/2)*4^(-1)+2^(1/2)*4^(-1)",     "",                                   ""},
   {"108",    "\x8A*3*5^(-1)",     "(1-5^(1/2))*4^(-1)",                 "",                                   ""},
   {"225/2",  "\x8A*5*8^(-1)",     "(2-2^(1/2))^(1/2)*(-2)^(-1)",        "",                                   ""},
   {"120",    "\x8A*2*3^(-1)",     "-0.5",                               "",                                   ""},
   {"126",    "\x8A*7*10^(-1)",    "-(5*8^(-1)-5^(1/2)*8^(-1))^(1/2)",   "",                                   ""},
   {"135",    "\x8A*3*4^(-1)",     "(-1)*(2^(-1/2))",                    "",                                   ""},
   {"144",    "\x8A*4*5^(-1)",     "(-5^(1/2)-1)*4^(-1)",                "",                                   ""},
   {"150",    "\x8A*5*6^(-1)",     "-3^(1/2)*2^(-1)",                    "",                                   ""},
   {"315/2",  "\x8A*7*8^(-1)",     "-(2+2^(1/2))^(1/2)*2^(-1)",          "",                                   ""},
   {"162",    "\x8A*9*10^(-1)",    "-(5*8^(-1)+5^(1/2)*8^(-1))^(1/2)",   "",                                   ""},
   {"165",    "\x8A*11*12^(-1)",   "(-1)*6^(1/2)*4^(-1)-2^(1/2)*4^(-1)", "",                                   ""},
   {"180",    "\x8A",              "-1",                                 "0",                                  "0"}};
  
  Expression * Trigonometry::table(const Expression * e, Expression::Type type, Context & context, Expression::AngleUnit angleUnit) {
    assert(type == Expression::Type::Sine || type == Expression::Type::Cosine || type == Expression::Type::Tangent || type == Expression::Type::ArcCosine || type == Expression::Type::ArcSine || type == Expression::Type::ArcTangent);
    int angleUnitIndex = angleUnit == Expression::AngleUnit::Radian ? 1 : 0;
    int trigonometricFunctionIndex = type == Expression::Type::Cosine || type == Expression::Type::ArcCosine ? 2 : (type == Expression::Type::Sine || type == Expression::Type::ArcSine ? 3 : 4);
    int inputIndex = type == Expression::Type::ArcCosine || type == Expression::Type::ArcSine || type == Expression::Type::ArcTangent ? trigonometricFunctionIndex : angleUnitIndex;
    int outputIndex = type == Expression::Type::ArcCosine || type == Expression::Type::ArcSine || type == Expression::Type::ArcTangent ? angleUnitIndex : trigonometricFunctionIndex;
  
    /* Avoid looping if we can exclude quickly that the e is in the table */
    if (inputIndex == 0 && e->type() != Expression::Type::Rational) {
      return nullptr;
    }
    if (inputIndex == 1 && e->type() != Expression::Type::Rational && e->type() != Expression::Type::Multiplication && e->type() != Expression::Type::Symbol) {
      return nullptr;
    }
    if (inputIndex >1 && e->type() != Expression::Type::Rational && e->type() != Expression::Type::Multiplication && e->type() != Expression::Type::Power && e->type() != Expression::Type::Addition) {
      return nullptr;
    }
    for (int i = 0; i < k_numberOfEntries; i++) {
      Expression * input = Expression::parse(cheatTable[i][inputIndex]);
      if (input == nullptr) {
        continue;
      }
      Expression::Reduce(&input, context, angleUnit);
      bool rightInput = input->isIdenticalTo(e);
      delete input;
      if (rightInput) {
        Expression * output = Expression::parse(cheatTable[i][outputIndex]);
        if (output == nullptr) {
          return nullptr;
        }
        Expression::Reduce(&output, context, angleUnit);
        return output;
      }
    }
    return nullptr;
  }
  
  
  template <typename T>
  std::complex<T> Trigonometry::ConvertToRadian(const std::complex<T> c, Expression::AngleUnit angleUnit) {
    if (angleUnit == Expression::AngleUnit::Degree) {
      return c*std::complex<T>(M_PI/180.0);
    }
    return c;
  }
  
  template <typename T>
  std::complex<T> Trigonometry::ConvertRadianToAngleUnit(const std::complex<T> c, Expression::AngleUnit angleUnit) {
    if (angleUnit == Expression::AngleUnit::Degree) {
      return c*std::complex<T>(180/M_PI);
    }
    return c;
  }
  
  template<typename T>
  T Trigonometry::RoundToMeaningfulDigits(T f) {
    /* Cheat: openbsd trigonometric functions are numerical implementation and
     * thus are approximative.
     * The error epsilon is ~1E-7 on float and ~1E-15 on double. In order to
     * avoid weird results as acos(1) = 6E-17 or cos(Pi/2) = 4E-17, we keep only
     * 15 (or 7) decimals.
     * We can't do that for all evaluation as the user can operate on values as
     * small as 1E-308 (in double) and most results still be correct. */
    T precision = 10*Expression::epsilon<T>();
    return std::round(f/precision)*precision;
  }
  
  template <typename T>
  std::complex<T> Trigonometry::RoundToMeaningfulDigits(const std::complex<T> c) {
    return std::complex<T>(RoundToMeaningfulDigits(c.real()), RoundToMeaningfulDigits(c.imag()));
  }
  
  template std::complex<float> Trigonometry::ConvertToRadian<float>(std::complex<float>, Expression::AngleUnit);
  template std::complex<double> Trigonometry::ConvertToRadian<double>(std::complex<double>, Expression::AngleUnit);
  template std::complex<float> Trigonometry::ConvertRadianToAngleUnit<float>(std::complex<float>, Expression::AngleUnit);
  template std::complex<double> Trigonometry::ConvertRadianToAngleUnit<double>(std::complex<double>, Expression::AngleUnit);
  template std::complex<float> Trigonometry::RoundToMeaningfulDigits<float>(std::complex<float>);
  template std::complex<double> Trigonometry::RoundToMeaningfulDigits<double>(std::complex<double>);
  
  }