#include #include #include #include #include #include #include #include #include #include #include extern "C" { #include } #include #include namespace Poincare { float Trigonometry::characteristicXRange(const Expression * e, Context & context, Expression::AngleUnit angleUnit) { assert(e->numberOfOperands() == 1); const Expression * op = e->operand(0); int d = op->polynomialDegree('x'); // op is not linear so we cannot not easily find an interesting range if (d < 0 || d > 1) { return op->characteristicXRange(context, angleUnit); } // The expression e is x-independent if (d == 0) { return 0.0f; } // e has the form cos/sin/tan(ax+b) so it is periodic of period 2*Pi/a assert(d == 1); /* To compute a, the slope of the expression op, we compute the derivative of * op for any x value. */ Poincare::Approximation x(1.0f); const Poincare::Expression * args[2] = {op, &x}; Poincare::Derivative derivative(args, true); float a = derivative.approximateToScalar(context, angleUnit); float pi = angleUnit == Expression::AngleUnit::Radian ? M_PI : 180.0f; return 2.0f*pi/std::fabs(a); } Expression * Trigonometry::shallowReduceDirectFunction(Expression * e, Context& context, Expression::AngleUnit angleUnit) { assert(e->type() == Expression::Type::Sine || e->type() == Expression::Type::Cosine || e->type() == Expression::Type::Tangent); Expression * lookup = Trigonometry::table(e->operand(0), e->type(), context, angleUnit); if (lookup != nullptr) { return e->replaceWith(lookup, true); } Expression::Type correspondingType = e->type() == Expression::Type::Cosine ? Expression::Type::ArcCosine : (e->type() == Expression::Type::Sine ? Expression::Type::ArcSine : Expression::Type::ArcTangent); if (e->operand(0)->type() == correspondingType) { return e->replaceWith(e->editableOperand(0)->editableOperand(0), true); } if (e->operand(0)->sign() == Expression::Sign::Negative) { Expression * op = e->editableOperand(0); Expression * newOp = op->setSign(Expression::Sign::Positive, context, angleUnit); newOp->shallowReduce(context, angleUnit); if (e->type() == Expression::Type::Cosine) { return e->shallowReduce(context, angleUnit); } else { Multiplication * m = new Multiplication(new Rational(-1), e->clone(), false); m->editableOperand(1)->shallowReduce(context, angleUnit); return e->replaceWith(m, true)->shallowReduce(context, angleUnit); } } if ((angleUnit == Expression::AngleUnit::Radian && e->operand(0)->type() == Expression::Type::Multiplication && e->operand(0)->numberOfOperands() == 2 && e->operand(0)->operand(1)->type() == Expression::Type::Symbol && static_cast(e->operand(0)->operand(1))->name() == Ion::Charset::SmallPi && e->operand(0)->operand(0)->type() == Expression::Type::Rational) || (angleUnit == Expression::AngleUnit::Degree && e->operand(0)->type() == Expression::Type::Rational)) { Rational * r = angleUnit == Expression::AngleUnit::Radian ? static_cast(e->editableOperand(0)->editableOperand(0)) : static_cast(e->editableOperand(0)); int unaryCoefficient = 1; // store 1 or -1 // Replace argument in [0, Pi/2[ or [0, 90[ Integer divisor = angleUnit == Expression::AngleUnit::Radian ? r->denominator() : Integer::Multiplication(r->denominator(), Integer(90)); Integer dividand = angleUnit == Expression::AngleUnit::Radian ? Integer::Addition(r->numerator(), r->numerator()) : r->numerator(); if (divisor.isLowerThan(dividand)) { Integer piDivisor = angleUnit == Expression::AngleUnit::Radian ? r->denominator() : Integer::Multiplication(r->denominator(), Integer(180)); IntegerDivision div = Integer::Division(r->numerator(), piDivisor); dividand = angleUnit == Expression::AngleUnit::Radian ? Integer::Addition(div.remainder, div.remainder) : div.remainder; if (divisor.isLowerThan(dividand)) { div.remainder = Integer::Subtraction(piDivisor, div.remainder); if (e->type() == Expression::Type::Cosine || e->type() == Expression::Type::Tangent) { unaryCoefficient *= -1; } } Rational * newR = new Rational(div.remainder, r->denominator()); Expression * rationalParent = angleUnit == Expression::AngleUnit::Radian ? e->editableOperand(0) : e; rationalParent->replaceOperand(r, newR, true); e->editableOperand(0)->shallowReduce(context, angleUnit); if (Integer::Division(div.quotient, Integer(2)).remainder.isOne() && e->type() != Expression::Type::Tangent) { unaryCoefficient *= -1; } Expression * simplifiedCosine = e->shallowReduce(context, angleUnit); // recursive Multiplication * m = new Multiplication(new Rational(unaryCoefficient), simplifiedCosine->clone(), false); return simplifiedCosine->replaceWith(m, true)->shallowReduce(context, angleUnit); } assert(r->sign() == Expression::Sign::Positive); assert(!divisor.isLowerThan(dividand)); } return e; } bool Trigonometry::ExpressionIsEquivalentToTangent(const Expression * e) { assert(Expression::Type::Power < Expression::Type::Sine); if (e->type() == Expression::Type::Multiplication && e->operand(1)->type() == Expression::Type::Sine && e->operand(0)->type() == Expression::Type::Power && e->operand(0)->operand(0)->type() == Expression::Type::Cosine && e->operand(0)->operand(1)->type() == Expression::Type::Rational && static_cast(e->operand(0)->operand(1))->isMinusOne()) { return true; } return false; } Expression * Trigonometry::shallowReduceInverseFunction(Expression * e, Context& context, Expression::AngleUnit angleUnit) { assert(e->type() == Expression::Type::ArcCosine || e->type() == Expression::Type::ArcSine || e->type() == Expression::Type::ArcTangent); Expression::Type correspondingType = e->type() == Expression::Type::ArcCosine ? Expression::Type::Cosine : (e->type() == Expression::Type::ArcSine ? Expression::Type::Sine : Expression::Type::Tangent); float pi = angleUnit == Expression::AngleUnit::Radian ? M_PI : 180; if (e->operand(0)->type() == correspondingType) { float trigoOp = e->operand(0)->operand(0)->approximateToScalar(context, angleUnit); if ((e->type() == Expression::Type::ArcCosine && trigoOp >= 0.0f && trigoOp <= pi) || (e->type() == Expression::Type::ArcSine && trigoOp >= -pi/2.0f && trigoOp <= pi/2.0f) || (e->type() == Expression::Type::ArcTangent && trigoOp >= -pi/2.0f && trigoOp <= pi/2.0f)) { return e->replaceWith(e->editableOperand(0)->editableOperand(0), true); } } // Special case for arctan(sin(x)/cos(x)) if (e->type() == Expression::Type::ArcTangent && ExpressionIsEquivalentToTangent(e->operand(0))) { float trigoOp = e->operand(0)->operand(1)->operand(0)->approximateToScalar(context, angleUnit); if (trigoOp >= -pi/2.0f && trigoOp <= pi/2.0f) { return e->replaceWith(e->editableOperand(0)->editableOperand(1)->editableOperand(0), true); } } Expression * lookup = Trigonometry::table(e->operand(0), e->type(), context, angleUnit); if (lookup != nullptr) { return e->replaceWith(lookup, true); } // arccos(-x) = Pi-arcos(x), arcsin(-x) = -arcsin(x), arctan(-x)=-arctan(x) if (e->operand(0)->sign() == Expression::Sign::Negative || (e->operand(0)->type() == Expression::Type::Multiplication && e->operand(0)->operand(0)->type() == Expression::Type::Rational && static_cast(e->operand(0)->operand(0))->isMinusOne())) { Expression * op = e->editableOperand(0); if (e->operand(0)->sign() == Expression::Sign::Negative) { Expression * newOp = op->setSign(Expression::Sign::Positive, context, angleUnit); newOp->shallowReduce(context, angleUnit); } else { ((Multiplication *)op)->removeOperand(op->editableOperand(0), true); op->shallowReduce(context, angleUnit); } if (e->type() == Expression::Type::ArcCosine) { Expression * pi = angleUnit == Expression::AngleUnit::Radian ? static_cast(new Symbol(Ion::Charset::SmallPi)) : static_cast(new Rational(180)); Subtraction * s = new Subtraction(pi, e->clone(), false); s->editableOperand(1)->shallowReduce(context, angleUnit); return e->replaceWith(s, true)->shallowReduce(context, angleUnit); } else { Multiplication * m = new Multiplication(new Rational(-1), e->clone(), false); m->editableOperand(1)->shallowReduce(context, angleUnit); return e->replaceWith(m, true)->shallowReduce(context, angleUnit); } } return e; } static_assert('\x8A' == Ion::Charset::SmallPi, "Unicode error"); constexpr const char * cheatTable[Trigonometry::k_numberOfEntries][5] = {{"-90", "\x8A*(-2)^(-1)", "", "-1", "undef"}, {"-75", "\x8A*(-5)*12^(-1)", "", "(-1)*6^(1/2)*4^(-1)-2^(1/2)*4^(-1)", "-(3^(1/2)+2)"}, {"-72", "\x8A*2*(-5)^(-1)", "", "-(5/8+5^(1/2)/8)^(1/2)", "-(5+2*5^(1/2))^(1/2)"}, {"-135/2", "\x8A*(-3)*8^(-1)", "", "-(2+2^(1/2))^(1/2)*2^(-1)", "-1-2^(1/2)"}, {"-60", "\x8A*(-3)^(-1)", "", "-3^(1/2)*2^(-1)", "-3^(1/2)"}, {"-54", "\x8A*(-3)*10^(-1)", "", "4^(-1)*(-1-5^(1/2))", "-(1+2*5^(-1/2))^(1/2)"}, {"-45", "\x8A*(-4)^(-1)", "", "(-1)*(2^(-1/2))", "-1"}, {"-36", "\x8A*(-5)^(-1)", "", "-(5/8-5^(1/2)/8)^(1/2)", "-(5-2*5^(1/2))^(1/2)"}, {"-30", "\x8A*(-6)^(-1)", "", "-0.5", "-3^(-1/2)"}, {"-45/2", "\x8A*(-8)^(-1)", "", "(2-2^(1/2))^(1/2)*(-2)^(-1)", "1-2^(1/2)"}, {"-18", "\x8A*(-10)^(-1)", "", "4^(-1)*(1-5^(1/2))", "-(1-2*5^(-1/2))^(1/2)"}, {"-15", "\x8A*(-12)^(-1)", "", "-6^(1/2)*4^(-1)+2^(1/2)*4^(-1)", "3^(1/2)-2"}, {"0", "0", "1", "0", "0"}, {"15", "\x8A*12^(-1)", "6^(1/2)*4^(-1)+2^(1/2)*4^(-1)", "6^(1/2)*4^(-1)+2^(1/2)*(-4)^(-1)", "-(3^(1/2)-2)"}, {"18", "\x8A*10^(-1)", "(5/8+5^(1/2)/8)^(1/2)", "4^(-1)*(5^(1/2)-1)", "(1-2*5^(-1/2))^(1/2)"}, {"45/2", "\x8A*8^(-1)", "(2+2^(1/2))^(1/2)*2^(-1)", "(2-2^(1/2))^(1/2)*2^(-1)", "2^(1/2)-1"}, {"30", "\x8A*6^(-1)", "3^(1/2)*2^(-1)", "0.5", "3^(-1/2)"}, {"36", "\x8A*5^(-1)", "(5^(1/2)+1)*4^(-1)", "(5/8-5^(1/2)/8)^(1/2)", "(5-2*5^(1/2))^(1/2)"}, {"45", "\x8A*4^(-1)", "2^(-1/2)", "2^(-1/2)", "1"}, {"54", "\x8A*3*10^(-1)", "(5/8-5^(1/2)/8)^(1/2)", "4^(-1)*(5^(1/2)+1)", "(1+2*5^(-1/2))^(1/2)"}, {"60", "\x8A*3^(-1)", "0.5", "3^(1/2)*2^(-1)", "3^(1/2)"}, {"135/2", "\x8A*3*8^(-1)", "(2-2^(1/2))^(1/2)*2^(-1)", "(2+2^(1/2))^(1/2)*2^(-1)", "1+2^(1/2)"}, {"72", "\x8A*2*5^(-1)", "(5^(1/2)-1)*4^(-1)", "(5/8+5^(1/2)/8)^(1/2)", "(5+2*5^(1/2))^(1/2)"}, {"75", "\x8A*5*12^(-1)", "6^(1/2)*4^(-1)+2^(1/2)*(-4)^(-1)", "6^(1/2)*4^(-1)+2^(1/2)*4^(-1)", "3^(1/2)+2"}, {"90", "\x8A*2^(-1)", "0", "1", "undef"}, {"105", "\x8A*7*12^(-1)", "-6^(1/2)*4^(-1)+2^(1/2)*4^(-1)", "", ""}, {"108", "\x8A*3*5^(-1)", "(1-5^(1/2))*4^(-1)", "", ""}, {"225/2", "\x8A*5*8^(-1)", "(2-2^(1/2))^(1/2)*(-2)^(-1)", "", ""}, {"120", "\x8A*2*3^(-1)", "-0.5", "", ""}, {"126", "\x8A*7*10^(-1)", "-(5*8^(-1)-5^(1/2)*8^(-1))^(1/2)", "", ""}, {"135", "\x8A*3*4^(-1)", "(-1)*(2^(-1/2))", "", ""}, {"144", "\x8A*4*5^(-1)", "(-5^(1/2)-1)*4^(-1)", "", ""}, {"150", "\x8A*5*6^(-1)", "-3^(1/2)*2^(-1)", "", ""}, {"315/2", "\x8A*7*8^(-1)", "-(2+2^(1/2))^(1/2)*2^(-1)", "", ""}, {"162", "\x8A*9*10^(-1)", "-(5*8^(-1)+5^(1/2)*8^(-1))^(1/2)", "", ""}, {"165", "\x8A*11*12^(-1)", "(-1)*6^(1/2)*4^(-1)-2^(1/2)*4^(-1)", "", ""}, {"180", "\x8A", "-1", "0", "0"}}; Expression * Trigonometry::table(const Expression * e, Expression::Type type, Context & context, Expression::AngleUnit angleUnit) { assert(type == Expression::Type::Sine || type == Expression::Type::Cosine || type == Expression::Type::Tangent || type == Expression::Type::ArcCosine || type == Expression::Type::ArcSine || type == Expression::Type::ArcTangent); int angleUnitIndex = angleUnit == Expression::AngleUnit::Radian ? 1 : 0; int trigonometricFunctionIndex = type == Expression::Type::Cosine || type == Expression::Type::ArcCosine ? 2 : (type == Expression::Type::Sine || type == Expression::Type::ArcSine ? 3 : 4); int inputIndex = type == Expression::Type::ArcCosine || type == Expression::Type::ArcSine || type == Expression::Type::ArcTangent ? trigonometricFunctionIndex : angleUnitIndex; int outputIndex = type == Expression::Type::ArcCosine || type == Expression::Type::ArcSine || type == Expression::Type::ArcTangent ? angleUnitIndex : trigonometricFunctionIndex; /* Avoid looping if we can exclude quickly that the e is in the table */ if (inputIndex == 0 && e->type() != Expression::Type::Rational) { return nullptr; } if (inputIndex == 1 && e->type() != Expression::Type::Rational && e->type() != Expression::Type::Multiplication && e->type() != Expression::Type::Symbol) { return nullptr; } if (inputIndex >1 && e->type() != Expression::Type::Rational && e->type() != Expression::Type::Multiplication && e->type() != Expression::Type::Power && e->type() != Expression::Type::Addition) { return nullptr; } for (int i = 0; i < k_numberOfEntries; i++) { Expression * input = Expression::parse(cheatTable[i][inputIndex]); if (input == nullptr) { continue; } Expression::Reduce(&input, context, angleUnit); bool rightInput = input->isIdenticalTo(e); delete input; if (rightInput) { Expression * output = Expression::parse(cheatTable[i][outputIndex]); if (output == nullptr) { return nullptr; } Expression::Reduce(&output, context, angleUnit); return output; } } return nullptr; } template std::complex Trigonometry::ConvertToRadian(const std::complex c, Expression::AngleUnit angleUnit) { if (angleUnit == Expression::AngleUnit::Degree) { return c*std::complex(M_PI/180.0); } return c; } template std::complex Trigonometry::ConvertRadianToAngleUnit(const std::complex c, Expression::AngleUnit angleUnit) { if (angleUnit == Expression::AngleUnit::Degree) { return c*std::complex(180/M_PI); } return c; } template T Trigonometry::RoundToMeaningfulDigits(T f) { /* Cheat: openbsd trigonometric functions are numerical implementation and * thus are approximative. * The error epsilon is ~1E-7 on float and ~1E-15 on double. In order to * avoid weird results as acos(1) = 6E-17 or cos(Pi/2) = 4E-17, we keep only * 15 (or 7) decimals. * We can't do that for all evaluation as the user can operate on values as * small as 1E-308 (in double) and most results still be correct. */ T precision = 10*Expression::epsilon(); return std::round(f/precision)*precision; } template std::complex Trigonometry::RoundToMeaningfulDigits(const std::complex c) { return std::complex(RoundToMeaningfulDigits(c.real()), RoundToMeaningfulDigits(c.imag())); } template std::complex Trigonometry::ConvertToRadian(std::complex, Expression::AngleUnit); template std::complex Trigonometry::ConvertToRadian(std::complex, Expression::AngleUnit); template std::complex Trigonometry::ConvertRadianToAngleUnit(std::complex, Expression::AngleUnit); template std::complex Trigonometry::ConvertRadianToAngleUnit(std::complex, Expression::AngleUnit); template std::complex Trigonometry::RoundToMeaningfulDigits(std::complex); template std::complex Trigonometry::RoundToMeaningfulDigits(std::complex); }