Blame view

Giac_maj/giac-1.4.9/src/ezgcd.h 3.98 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  /* -*- mode:C++ ; compile-command: "g++ -I.. -g -c ezgcd.cc" -*- */
  /*  Multivariate GCD for large data not covered by the heuristic GCD algo
   *  Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
   *
   *  This program is free software; you can redistribute it and/or modify
   *  it under the terms of the GNU General Public License as published by
   *  the Free Software Foundation; either version 3 of the License, or
   *  (at your option) any later version.
   *
   *  This program is distributed in the hope that it will be useful,
   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   *  GNU General Public License for more details.
   *
   *  You should have received a copy of the GNU General Public License
   *  along with this program. If not, see <http://www.gnu.org/licenses/>.
   */
  
  #ifndef _GIAC_EZGCD_H_
  #define _GIAC_EZGCD_H_
  #include "first.h"
  #include "gausspol.h"
  
  #ifndef NO_NAMESPACE_GIAC
  namespace giac {
  #endif // ndef NO_NAMESPACE_GIAC
  
    void change_dim(polynome & p,int dim);
  
    // Hensel quadratic lift
    // Lift the equality p(b)=qb*rb [where b is a vecteur like for peval
    // assumed to have p.dim-1 coordinates] to p=q*r mod (X-b)^deg
    // Assuming that lcoeff(q)=lcp, lcoeff(r)=lcp, lcoeff(p)=lcp^2
    // If you want to find factors of a poly P such that P(b)=Qb*Rb, 
    // if lcp is the leading coeff of P
    // then p=P*lcp, qb=Qb*lcp(b)/lcoeff(Qb), rb=Rb*lcp(b)/lcoeff(Rb)
    bool hensel_lift(const polynome & p, const polynome & lcp, const polynome & qb, const polynome & rb, const vecteur & b,polynome & q, polynome & r,bool linear_lift=true,double maxop=-1);
  
    bool find_good_eval(const polynome & F,const polynome & G,polynome & Fb,polynome & Gb,vecteur & b,bool debuglog=false,const gen & mod=zero);
    polynome peval_1(const polynome & p,const vecteur &v,const gen & mod);
    // Replace the last coordinates of p with b instead of the first
    gen peval_back(const polynome & p,const vecteur & b);
    polynome unmodularize(const std::vector<int> & a);
  
    // reduce_divrem does a mixed division: euclidean w.r.t. the first var
    // and ascending power of X-v for the other vars
    // FIXME: this implementation does not work currently, except if other
    // depends only on the first var
    bool bool reduce_divrem(const polynome & a,const polynome & other,const vecteur & v,int n,polynome & quo,polynome & rem) ;(const polynome & a,const polynome & other,const vecteur & v,int n,polynome & quo,polynome & rem) bool reduce_divrem(const polynome & a,const polynome & other,const vecteur & v,int n,polynome & quo,polynome & rem) ;
  
    // find the "remainder of p mod (X-v)^degree"
    // dim(p) = size(v)+1 (reduction for all variables of p except the main var)
    polynome reduce_poly(const polynome & p,const vecteur & v,int degree);
  
    bool try_sparse_factor(const polynome & pcur,const factorization & v0,int mult,factorization & f);
    bool try_sparse_factor_bi(polynome & pcur,int mult,factorization & f);
  
    bool try_hensel_lift_factor(const polynome & pcur,const polynome & F0,const factorization & v0,int mult,factorization & f);
  
    // find u,v,d s.t. u*p+v*q=d by Hensel lift
    bool try_hensel_egcd(const polynome & p,const polynome & q,polynome &u,polynome &v,polynome & d);
  
    // max_gcddeg is used when ezgcd was not successfull to find
    // the gcd even with 2 evaluations leading to the same gcd degree
    // in this case ezgcd calls itself with a bound on the gcd degree
    // is_sqff is true if we know that F_orig or G_orig is squarefree
    // is_primitive is true if F_orig and G_orig is primitive
    bool ezgcd(const polynome & F_orig,const polynome & G_orig,polynome & GCD,bool is_sqff=false,bool is_primitive=false,int max_gcddeg=0,double maxop=-1);
  
    gen _ezgcd(const gen & args,GIAC_CONTEXT);
    extern const unary_function_ptr * const  at_ezgcd;  
  
    gen _modgcd(const gen & args,GIAC_CONTEXT);
    extern const unary_function_ptr * const  at_modgcd;  
  
    gen _heugcd(const gen & args,GIAC_CONTEXT);
    extern const unary_function_ptr * const  at_heugcd;  
  
    gen _psrgcd(const gen & args,GIAC_CONTEXT);
    extern const unary_function_ptr * const  at_psrgcd;  
  
  #ifndef NO_NAMESPACE_GIAC
  } // namespace giac
  #endif // NO_NAMESPACE_GIAC
  
  #endif // _GIAC_EZGCD_H