/* -*- mode:C++ ; compile-command: "g++ -I.. -g -c ezgcd.cc" -*- */ /* Multivariate GCD for large data not covered by the heuristic GCD algo * Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef _GIAC_EZGCD_H_ #define _GIAC_EZGCD_H_ #include "first.h" #include "gausspol.h" #ifndef NO_NAMESPACE_GIAC namespace giac { #endif // ndef NO_NAMESPACE_GIAC void change_dim(polynome & p,int dim); // Hensel quadratic lift // Lift the equality p(b)=qb*rb [where b is a vecteur like for peval // assumed to have p.dim-1 coordinates] to p=q*r mod (X-b)^deg // Assuming that lcoeff(q)=lcp, lcoeff(r)=lcp, lcoeff(p)=lcp^2 // If you want to find factors of a poly P such that P(b)=Qb*Rb, // if lcp is the leading coeff of P // then p=P*lcp, qb=Qb*lcp(b)/lcoeff(Qb), rb=Rb*lcp(b)/lcoeff(Rb) bool hensel_lift(const polynome & p, const polynome & lcp, const polynome & qb, const polynome & rb, const vecteur & b,polynome & q, polynome & r,bool linear_lift=true,double maxop=-1); bool find_good_eval(const polynome & F,const polynome & G,polynome & Fb,polynome & Gb,vecteur & b,bool debuglog=false,const gen & mod=zero); polynome peval_1(const polynome & p,const vecteur &v,const gen & mod); // Replace the last coordinates of p with b instead of the first gen peval_back(const polynome & p,const vecteur & b); polynome unmodularize(const std::vector & a); // reduce_divrem does a mixed division: euclidean w.r.t. the first var // and ascending power of X-v for the other vars // FIXME: this implementation does not work currently, except if other // depends only on the first var bool reduce_divrem(const polynome & a,const polynome & other,const vecteur & v,int n,polynome & quo,polynome & rem) ; // find the "remainder of p mod (X-v)^degree" // dim(p) = size(v)+1 (reduction for all variables of p except the main var) polynome reduce_poly(const polynome & p,const vecteur & v,int degree); bool try_sparse_factor(const polynome & pcur,const factorization & v0,int mult,factorization & f); bool try_sparse_factor_bi(polynome & pcur,int mult,factorization & f); bool try_hensel_lift_factor(const polynome & pcur,const polynome & F0,const factorization & v0,int mult,factorization & f); // find u,v,d s.t. u*p+v*q=d by Hensel lift bool try_hensel_egcd(const polynome & p,const polynome & q,polynome &u,polynome &v,polynome & d); // max_gcddeg is used when ezgcd was not successfull to find // the gcd even with 2 evaluations leading to the same gcd degree // in this case ezgcd calls itself with a bound on the gcd degree // is_sqff is true if we know that F_orig or G_orig is squarefree // is_primitive is true if F_orig and G_orig is primitive bool ezgcd(const polynome & F_orig,const polynome & G_orig,polynome & GCD,bool is_sqff=false,bool is_primitive=false,int max_gcddeg=0,double maxop=-1); gen _ezgcd(const gen & args,GIAC_CONTEXT); extern const unary_function_ptr * const at_ezgcd; gen _modgcd(const gen & args,GIAC_CONTEXT); extern const unary_function_ptr * const at_modgcd; gen _heugcd(const gen & args,GIAC_CONTEXT); extern const unary_function_ptr * const at_heugcd; gen _psrgcd(const gen & args,GIAC_CONTEXT); extern const unary_function_ptr * const at_psrgcd; #ifndef NO_NAMESPACE_GIAC } // namespace giac #endif // NO_NAMESPACE_GIAC #endif // _GIAC_EZGCD_H