593e0a0e
rlentieu
ajout fichiers pr...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
|
/*
* $RCSfile: PerspectiveTransform.java,v $
*
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
*
* Use is subject to license terms.
*
* $Revision: 1.1 $
* $Date: 2005/02/11 04:57:15 $
* $State: Exp $
*/
package javax.media.jai;
import java.awt.geom.AffineTransform;
import java.awt.geom.Point2D;
import java.awt.geom.NoninvertibleTransformException;
import java.io.Serializable;
/**
* A 2D perspective (or projective) transform, used by various OpImages.
*
* <p> A perspective transformation is capable of mapping an arbitrary
* quadrilateral into another arbitrary quadrilateral, while
* preserving the straightness of lines. Unlike an affine
* transformation, the parallelism of lines in the source is not
* necessarily preserved in the output.
*
* <p> Such a coordinate transformation can be represented by a 3x3
* matrix which transforms homogenous source coordinates
* <code>(x, y, 1)</code> into destination coordinates
* <code>(x', y', w)</code>. To convert back into non-homogenous
* coordinates (X, Y), <code>x'</code> and <code>y'</code> are divided by
* <code>w</code>.
*
* <pre>
* [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ]
* [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ]
* [ w ] [ m20 m21 m22 ] [ 1 ] [ m20x + m21y + m22 ]
*
* x' = (m00x + m01y + m02)
* y' = (m10x + m11y + m12)
*
* w = (m20x + m21y + m22)
*
* X = x' / w
* Y = y' / w
* </pre>
*/
public final class PerspectiveTransform implements Cloneable, Serializable {
private static final double PERSPECTIVE_DIVIDE_EPSILON = 1.0e-10;
/** An element of the transform matrix. */
double m00, m01, m02, m10, m11, m12, m20, m21, m22;
/** Constructs an identity PerspectiveTransform. */
public PerspectiveTransform() {
m00 = m11 = m22 = 1.0;
m01 = m02 = m10 = m12 = m20 = m21 = 0.0;
}
/**
* Constructs a new PerspectiveTransform from 9 floats.
* @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
*/
public PerspectiveTransform(float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22) {
this.m00 = m00;
this.m01 = m01;
this.m02 = m02;
this.m10 = m10;
this.m11 = m11;
this.m12 = m12;
this.m20 = m20;
this.m21 = m21;
this.m22 = m22;
}
/**
* Constructs a new PerspectiveTransform from 9 doubles.
* @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
*/
public PerspectiveTransform(double m00, double m01, double m02,
double m10, double m11, double m12,
double m20, double m21, double m22) {
this.m00 = m00;
this.m01 = m01;
this.m02 = m02;
this.m10 = m10;
this.m11 = m11;
this.m12 = m12;
this.m20 = m20;
this.m21 = m21;
this.m22 = m22;
}
/**
* Constructs a new PerspectiveTransform from a one-dimensional
* array of 9 floats, in row-major order.
* The values in the array are assumed to be
* { m00 m01 m02 m10 m11 m12 m20 m21 m22 }.
* @throws IllegalArgumentException if flatmatrix is null
* @throws ArrayIndexOutOfBoundsException if flatmatrix is too small
* @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
*/
public PerspectiveTransform(float[] flatmatrix) {
if ( flatmatrix == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = flatmatrix[0];
m01 = flatmatrix[1];
m02 = flatmatrix[2];
m10 = flatmatrix[3];
m11 = flatmatrix[4];
m12 = flatmatrix[5];
m20 = flatmatrix[6];
m21 = flatmatrix[7];
m22 = flatmatrix[8];
}
/**
* Constructs a new PerspectiveTransform from a two-dimensional
* array of floats.
* @throws IllegalArgumentException if matrix is null
* @throws ArrayIndexOutOfBoundsException if matrix is too small
*
* @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
*/
public PerspectiveTransform(float[][] matrix) {
if ( matrix == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = matrix[0][0];
m01 = matrix[0][1];
m02 = matrix[0][2];
m10 = matrix[1][0];
m11 = matrix[1][1];
m12 = matrix[1][2];
m20 = matrix[2][0];
m21 = matrix[2][1];
m22 = matrix[2][2];
}
/**
* Constructs a new PerspectiveTransform from a one-dimensional
* array of 9 doubles, in row-major order.
* The values in the array are assumed to be
* { m00 m01 m02 m10 m11 m12 m20 m21 m22 }.
* @throws IllegalArgumentException if flatmatrix is null
* @throws ArrayIndexOutOfBoundsException if flatmatrix is too small
*
* @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
*/
public PerspectiveTransform(double[] flatmatrix) {
if ( flatmatrix == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = flatmatrix[0];
m01 = flatmatrix[1];
m02 = flatmatrix[2];
m10 = flatmatrix[3];
m11 = flatmatrix[4];
m12 = flatmatrix[5];
m20 = flatmatrix[6];
m21 = flatmatrix[7];
m22 = flatmatrix[8];
}
/**
* Constructs a new PerspectiveTransform from a two-dimensional
* array of doubles.
* @throws IllegalArgumentException if matrix is null
* @throws ArrayIndexOutOfBoundsException if matrix is too small
*/
public PerspectiveTransform(double[][] matrix) {
if ( matrix == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = matrix[0][0];
m01 = matrix[0][1];
m02 = matrix[0][2];
m10 = matrix[1][0];
m11 = matrix[1][1];
m12 = matrix[1][2];
m20 = matrix[2][0];
m21 = matrix[2][1];
m22 = matrix[2][2];
}
/**
* Constructs a new PerspectiveTransform with the same effect
* as an existing AffineTransform.
* @throws IllegalArgumentException if transform is null
*/
public PerspectiveTransform(AffineTransform transform) {
if ( transform == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = transform.getScaleX();
m01 = transform.getShearX();
m02 = transform.getTranslateX();
m10 = transform.getShearY();
m11 = transform.getScaleY();
m12 = transform.getTranslateY();
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}
/**
* Replaces the matrix with its adjoint.
*/
private final void makeAdjoint() {
double m00p = m11*m22 - m12*m21;
double m01p = m12*m20 - m10*m22; // flipped sign
double m02p = m10*m21 - m11*m20;
double m10p = m02*m21 - m01*m22; // flipped sign
double m11p = m00*m22 - m02*m20;
double m12p = m01*m20 - m00*m21; // flipped sign
double m20p = m01*m12 - m02*m11;
double m21p = m02*m10 - m00*m12; // flipped sign
double m22p = m00*m11 - m01*m10;
// Transpose and copy sub-determinants
m00 = m00p;
m01 = m10p;
m02 = m20p;
m10 = m01p;
m11 = m11p;
m12 = m21p;
m20 = m02p;
m21 = m12p;
m22 = m22p;
}
/**
* Scales the matrix elements so m22 is equal to 1.0.
* m22 must not be equal to 0.
*/
private final void normalize() {
double invscale = 1.0/m22;
m00 *= invscale;
m01 *= invscale;
m02 *= invscale;
m10 *= invscale;
m11 *= invscale;
m12 *= invscale;
m20 *= invscale;
m21 *= invscale;
m22 = 1.0;
}
private static final void getSquareToQuad(double x0, double y0,
double x1, double y1,
double x2, double y2,
double x3, double y3,
PerspectiveTransform tx) {
double dx3 = x0 - x1 + x2 - x3;
double dy3 = y0 - y1 + y2 - y3;
tx.m22 = 1.0F;
if ((dx3 == 0.0F) && (dy3 == 0.0F)) { // to do: use tolerance
tx.m00 = x1 - x0;
tx.m01 = x2 - x1;
tx.m02 = x0;
tx.m10 = y1 - y0;
tx.m11 = y2 - y1;
tx.m12 = y0;
tx.m20 = 0.0F;
tx.m21 = 0.0F;
} else {
double dx1 = x1 - x2;
double dy1 = y1 - y2;
double dx2 = x3 - x2;
double dy2 = y3 - y2;
double invdet = 1.0F/(dx1*dy2 - dx2*dy1);
tx.m20 = (dx3*dy2 - dx2*dy3)*invdet;
tx.m21 = (dx1*dy3 - dx3*dy1)*invdet;
tx.m00 = x1 - x0 + tx.m20*x1;
tx.m01 = x3 - x0 + tx.m21*x3;
tx.m02 = x0;
tx.m10 = y1 - y0 + tx.m20*y1;
tx.m11 = y3 - y0 + tx.m21*y3;
tx.m12 = y0;
}
}
/**
* Creates a PerspectiveTransform that maps the unit square
* onto an arbitrary quadrilateral.
*
* <pre>
* (0, 0) -> (x0, y0)
* (1, 0) -> (x1, y1)
* (1, 1) -> (x2, y2)
* (0, 1) -> (x3, y3)
* </pre>
*/
public static PerspectiveTransform getSquareToQuad(double x0, double y0,
double x1, double y1,
double x2, double y2,
double x3, double y3) {
PerspectiveTransform tx = new PerspectiveTransform();
getSquareToQuad(x0, y0, x1, y1, x2, y2, x3, y3, tx);
return tx;
}
/**
* Creates a PerspectiveTransform that maps the unit square
* onto an arbitrary quadrilateral.
*
* <pre>
* (0, 0) -> (x0, y0)
* (1, 0) -> (x1, y1)
* (1, 1) -> (x2, y2)
* (0, 1) -> (x3, y3)
* </pre>
*/
public static PerspectiveTransform getSquareToQuad(float x0, float y0,
float x1, float y1,
float x2, float y2,
float x3, float y3) {
return getSquareToQuad((double)x0, (double)y0,
(double)x1, (double)y1,
(double)x2, (double)y2,
(double)x3, (double)y3);
}
/**
* Creates a PerspectiveTransform that maps an arbitrary
* quadrilateral onto the unit square.
*
* <pre>
* (x0, y0) -> (0, 0)
* (x1, y1) -> (1, 0)
* (x2, y2) -> (1, 1)
* (x3, y3) -> (0, 1)
* </pre>
*/
public static PerspectiveTransform getQuadToSquare(double x0, double y0,
double x1, double y1,
double x2, double y2,
double x3, double y3) {
PerspectiveTransform tx = new PerspectiveTransform();
getSquareToQuad(x0, y0, x1, y1, x2, y2, x3, y3, tx);
tx.makeAdjoint();
return tx;
}
/**
* Creates a PerspectiveTransform that maps an arbitrary
* quadrilateral onto the unit square.
*
* <pre>
* (x0, y0) -> (0, 0)
* (x1, y1) -> (1, 0)
* (x2, y2) -> (1, 1)
* (x3, y3) -> (0, 1)
* </pre>
*/
public static PerspectiveTransform getQuadToSquare(float x0, float y0,
float x1, float y1,
float x2, float y2,
float x3, float y3) {
return getQuadToSquare((double)x0, (double)y0,
(double)x1, (double)y1,
(double)x2, (double)y2,
(double)x3, (double)y3);
}
/**
* Creates a PerspectiveTransform that maps an arbitrary
* quadrilateral onto another arbitrary quadrilateral.
*
* <pre>
* (x0, y0) -> (x0p, y0p)
* (x1, y1) -> (x1p, y1p)
* (x2, y2) -> (x2p, y2p)
* (x3, y3) -> (x3p, y3p)
* </pre>
*/
public static PerspectiveTransform getQuadToQuad(double x0, double y0,
double x1, double y1,
double x2, double y2,
double x3, double y3,
double x0p, double y0p,
double x1p, double y1p,
double x2p, double y2p,
double x3p, double y3p) {
PerspectiveTransform tx1 =
getQuadToSquare(x0, y0, x1, y1, x2, y2, x3, y3);
PerspectiveTransform tx2 =
getSquareToQuad(x0p, y0p, x1p, y1p, x2p, y2p, x3p, y3p);
tx1.concatenate(tx2);
return tx1;
}
/**
* Creates a PerspectiveTransform that maps an arbitrary
* quadrilateral onto another arbitrary quadrilateral.
*
* <pre>
* (x0, y0) -> (x0p, y0p)
* (x1, y1) -> (x1p, y1p)
* (x2, y2) -> (x2p, y2p)
* (x3, y3) -> (x3p, y3p)
* </pre>
*/
public static PerspectiveTransform getQuadToQuad(float x0, float y0,
float x1, float y1,
float x2, float y2,
float x3, float y3,
float x0p, float y0p,
float x1p, float y1p,
float x2p, float y2p,
float x3p, float y3p) {
return getQuadToQuad((double)x0, (double)y0,
(double)x1, (double)y1,
(double)x2, (double)y2,
(double)x3, (double)y3,
(double)x0p, (double)y0p,
(double)x1p, (double)y1p,
(double)x2p, (double)y2p,
(double)x3p, (double)y3p);
}
/**
* Returns the determinant of the matrix representation of the
* transform.
*/
public double getDeterminant() {
return ( (m00 * ((m11 * m22) - (m12 * m21))) -
(m01 * ((m10 * m22) - (m12 * m20))) +
(m02 * ((m10 * m21) - (m11 * m20))) );
}
/**
* Retrieves the 9 specifiable values in the 3x3 affine
* transformation matrix into an array of double precision values.
* The values are stored into the array as
* { m00 m01 m02 m10 m11 m12 m20 m21 m22 }.
*
* @param flatmatrix The double array used to store the returned
* values. The length of the array is assumed to be at
* least 9.
* @throws ArrayIndexOutOfBoundsException if flatmatrix is too small
* @deprecated as of JAI 1.1 Use double[][] getMatrix(double[][] matrix) instead.
*/
public double[] getMatrix(double[] flatmatrix) {
if (flatmatrix == null) {
flatmatrix = new double[9];
}
flatmatrix[0] = m00;
flatmatrix[1] = m01;
flatmatrix[2] = m02;
flatmatrix[3] = m10;
flatmatrix[4] = m11;
flatmatrix[5] = m12;
flatmatrix[6] = m20;
flatmatrix[7] = m21;
flatmatrix[8] = m22;
return flatmatrix;
}
/**
* Retrieves the 9 specifiable values in the 3x3 affine
* transformation matrix into a 2-dimensional array of double
* precision values. The values are stored into the 2-dimensional
* array using the row index as the first subscript and the column
* index as the second.
*
* @param matrix The 2-dimensional double array to store the
* returned values. The array is assumed to be at least 3x3.
* @throws ArrayIndexOutOfBoundsException if matrix is too small
*/
public double[][] getMatrix(double[][] matrix) {
if (matrix == null) {
matrix = new double[3][3];
}
matrix[0][0] = m00;
matrix[0][1] = m01;
matrix[0][2] = m02;
matrix[1][0] = m10;
matrix[1][1] = m11;
matrix[1][2] = m12;
matrix[2][0] = m20;
matrix[2][1] = m21;
matrix[2][2] = m22;
return matrix;
}
/**
* Concatenates this transform with a translation transformation.
* This is equivalent to calling concatenate(T), where T is an
* PerspectiveTransform represented by the following matrix:
* <pre>
* [ 1 0 tx ]
* [ 0 1 ty ]
* [ 0 0 1 ]
* </pre>
*/
public void translate(double tx, double ty) {
PerspectiveTransform Tx = new PerspectiveTransform();
Tx.setToTranslation(tx, ty);
concatenate(Tx);
}
/**
* Concatenates this transform with a rotation transformation.
* This is equivalent to calling concatenate(R), where R is an
* PerspectiveTransform represented by the following matrix:
* <pre>
* [ cos(theta) -sin(theta) 0 ]
* [ sin(theta) cos(theta) 0 ]
* [ 0 0 1 ]
* </pre>
* Rotating with a positive angle theta rotates points on the positive
* X axis toward the positive Y axis.
*
* @param theta The angle of rotation in radians.
*/
public void rotate(double theta) {
PerspectiveTransform Tx = new PerspectiveTransform();
Tx.setToRotation(theta);
concatenate(Tx);
}
/**
* Concatenates this transform with a translated rotation transformation.
* This is equivalent to the following sequence of calls:
* <pre>
* translate(x, y);
* rotate(theta);
* translate(-x, -y);
* </pre>
* Rotating with a positive angle theta rotates points on the positive
* X axis toward the positive Y axis.
*
* @param theta The angle of rotation in radians.
* @param x The X coordinate of the origin of the rotation
* @param y The Y coordinate of the origin of the rotation
*/
public void rotate(double theta, double x, double y) {
PerspectiveTransform Tx = new PerspectiveTransform();
Tx.setToRotation(theta, x, y);
concatenate(Tx);
}
/**
* Concatenates this transform with a scaling transformation.
* This is equivalent to calling concatenate(S), where S is an
* PerspectiveTransform represented by the following matrix:
* <pre>
* [ sx 0 0 ]
* [ 0 sy 0 ]
* [ 0 0 1 ]
* </pre>
*
* @param sx The X axis scale factor.
* @param sy The Y axis scale factor.
*/
public void scale(double sx, double sy) {
PerspectiveTransform Tx = new PerspectiveTransform();
Tx.setToScale(sx, sy);
concatenate(Tx);
}
/**
* Concatenates this transform with a shearing transformation.
* This is equivalent to calling concatenate(SH), where SH is an
* PerspectiveTransform represented by the following matrix:
* <pre>
* [ 1 shx 0 ]
* [ shy 1 0 ]
* [ 0 0 1 ]
* </pre>
*
* @param shx The factor by which coordinates are shifted towards
* the positive X axis direction according to their Y
* coordinate.
* @param shy The factor by which coordinates are shifted towards
* the positive Y axis direction according to their X
* coordinate.
*/
public void shear(double shx, double shy) {
PerspectiveTransform Tx = new PerspectiveTransform();
Tx.setToShear(shx, shy);
concatenate(Tx);
}
/**
* Resets this transform to the Identity transform.
*/
public void setToIdentity() {
m00 = m11 = m22 = 1.0;
m01 = m10 = m02 = m20 = m12 = m21 = 0.0;
}
/**
* Sets this transform to a translation transformation.
* The matrix representing this transform becomes:
* <pre>
* [ 1 0 tx ]
* [ 0 1 ty ]
* [ 0 0 1 ]
* </pre>
* @param tx The distance by which coordinates are translated in the
* X axis direction
* @param ty The distance by which coordinates are translated in the
* Y axis direction
*/
public void setToTranslation(double tx, double ty) {
m00 = 1.0;
m01 = 0.0;
m02 = tx;
m10 = 0.0;
m11 = 1.0;
m12 = ty;
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}
/**
* Sets this transform to a rotation transformation.
* The matrix representing this transform becomes:
* <pre>
* [ cos(theta) -sin(theta) 0 ]
* [ sin(theta) cos(theta) 0 ]
* [ 0 0 1 ]
* </pre>
* Rotating with a positive angle theta rotates points on the positive
* X axis toward the positive Y axis.
* @param theta The angle of rotation in radians.
*/
public void setToRotation(double theta) {
m00 = Math.cos(theta);
m01 = -Math.sin(theta);
m02 = 0.0;
m10 = - m01; // Math.sin(theta);
m11 = m00; // Math.cos(theta);
m12 = 0.0;
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}
/**
* Sets this transform to a rotation transformation
* about a specified point (x, y). This is equivalent
* to the following sequence of calls:
*
* <pre>
* setToTranslate(x, y);
* rotate(theta);
* translate(-x, -y);
* </pre>
*
* Rotating with a positive angle theta rotates points on the positive
* X axis toward the positive Y axis.
*
* @param theta The angle of rotation in radians.
* @param x The X coordinate of the origin of the rotation
* @param y The Y coordinate of the origin of the rotation
*/
public void setToRotation(double theta, double x, double y) {
setToRotation(theta);
double sin = m10;
double oneMinusCos = 1.0 - m00;
m02 = x * oneMinusCos + y * sin;
m12 = y * oneMinusCos - x * sin;
}
/**
* Sets this transform to a scale transformation
* with scale factors sx and sy.
* The matrix representing this transform becomes:
* <pre>
* [ sx 0 0 ]
* [ 0 sy 0 ]
* [ 0 0 1 ]
* </pre>
*
* @param sx The X axis scale factor.
* @param sy The Y axis scale factor.
*/
public void setToScale(double sx, double sy) {
m00 = sx;
m01 = 0.0;
m02 = 0.0;
m10 = 0.0;
m11 = sy;
m12 = 0.0;
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}
/**
* Sets this transform to a shearing transformation
* with shear factors sx and sy.
* The matrix representing this transform becomes:
* <pre>
* [ 1 shx 0 ]
* [ shy 1 0 ]
* [ 0 0 1 ]
* </pre>
*
* @param shx The factor by which coordinates are shifted towards
* the positive X axis direction according to their Y
* coordinate.
* @param shy The factor by which coordinates are shifted towards
* the positive Y axis direction according to their X
* coordinate.
*/
public void setToShear(double shx, double shy) {
m00 = 1.0;
m01 = shx;
m02 = 0.0;
m10 = shy;
m11 = 1.0;
m12 = 0.0;
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}
/**
* Sets this transform to a given AffineTransform.
* @throws IllegalArgumentException if Tx is null
*/
public void setTransform(AffineTransform Tx) {
if ( Tx == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = Tx.getScaleX();
m01 = Tx.getShearX();
m02 = Tx.getTranslateX();
m10 = Tx.getShearY();
m11 = Tx.getScaleY();
m12 = Tx.getTranslateY();
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}
/**
* Sets this transform to a given PerspectiveTransform.
* @throws IllegalArgumentException if Tx is null
*/
public void setTransform(PerspectiveTransform Tx) {
if ( Tx == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = Tx.m00;
m01 = Tx.m01;
m02 = Tx.m02;
m10 = Tx.m10;
m11 = Tx.m11;
m12 = Tx.m12;
m20 = Tx.m20;
m21 = Tx.m21;
m22 = Tx.m22;
}
/**
* Sets this transform to a given PerspectiveTransform,
* expressed by the elements of its matrix. <i>Important Note: The
* matrix elements in the argument list are in column-major order
* unlike those of the constructor, which are in row-major order.</i>
* @deprecated as of JAI 1.1 Use double[][] getMatrix(double[][] matrix) instead.
*/
public void setTransform(float m00, float m10, float m20,
float m01, float m11, float m21,
float m02, float m12, float m22) {
this.m00 = (double)m00;
this.m01 = (double)m01;
this.m02 = (double)m02;
this.m10 = (double)m10;
this.m11 = (double)m11;
this.m12 = (double)m12;
this.m20 = (double)m20;
this.m21 = (double)m21;
this.m22 = (double)m22;
}
/**
* Sets this transform using a two-dimensional array of double precision
* values. The row index is first, and the column index is second.
*
* @param matrix The 2D double array to be used for setting this transform.
* The array is assumed to be at least 3x3.
* @throws IllegalArgumentException if matrix is null
* @throws ArrayIndexOutOfBoundsException if matrix is too small
* @since JAI 1.1
*/
public void setTransform(double[][] matrix) {
if ( matrix == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
m00 = matrix[0][0];
m01 = matrix[0][1];
m02 = matrix[0][2];
m10 = matrix[1][0];
m11 = matrix[1][1];
m12 = matrix[1][2];
m20 = matrix[2][0];
m21 = matrix[2][1];
m22 = matrix[2][2];
}
/**
* Post-concatenates a given AffineTransform to this transform.
* @throws IllegalArgumentException if Tx is null
*/
public void concatenate(AffineTransform Tx) {
if ( Tx == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
// Extend Tx: Tx.m20 = 0, Tx.m21 = 0, Tx.m22 = 1
double tx_m00 = Tx.getScaleX();
double tx_m01 = Tx.getShearX();
double tx_m02 = Tx.getTranslateX();
double tx_m10 = Tx.getShearY();
double tx_m11 = Tx.getScaleY();
double tx_m12 = Tx.getTranslateY();
double m00p = m00*tx_m00 + m10*tx_m01 + m20*tx_m02;
double m01p = m01*tx_m00 + m11*tx_m01 + m21*tx_m02;
double m02p = m02*tx_m00 + m12*tx_m01 + m22*tx_m02;
double m10p = m00*tx_m10 + m10*tx_m11 + m20*tx_m12;
double m11p = m01*tx_m10 + m11*tx_m11 + m21*tx_m12;
double m12p = m02*tx_m10 + m12*tx_m11 + m22*tx_m12;
double m20p = m20;
double m21p = m21;
double m22p = m22;
m00 = m00p;
m10 = m10p;
m20 = m20p;
m01 = m01p;
m11 = m11p;
m21 = m21p;
m02 = m02p;
m12 = m12p;
m22 = m22p;
}
/**
* Post-concatenates a given PerspectiveTransform to this transform.
* @throws IllegalArgumentException if Tx is null
*/
public void concatenate(PerspectiveTransform Tx) {
if ( Tx == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
double m00p = m00*Tx.m00 + m10*Tx.m01 + m20*Tx.m02;
double m10p = m00*Tx.m10 + m10*Tx.m11 + m20*Tx.m12;
double m20p = m00*Tx.m20 + m10*Tx.m21 + m20*Tx.m22;
double m01p = m01*Tx.m00 + m11*Tx.m01 + m21*Tx.m02;
double m11p = m01*Tx.m10 + m11*Tx.m11 + m21*Tx.m12;
double m21p = m01*Tx.m20 + m11*Tx.m21 + m21*Tx.m22;
double m02p = m02*Tx.m00 + m12*Tx.m01 + m22*Tx.m02;
double m12p = m02*Tx.m10 + m12*Tx.m11 + m22*Tx.m12;
double m22p = m02*Tx.m20 + m12*Tx.m21 + m22*Tx.m22;
m00 = m00p;
m10 = m10p;
m20 = m20p;
m01 = m01p;
m11 = m11p;
m21 = m21p;
m02 = m02p;
m12 = m12p;
m22 = m22p;
}
/**
* Pre-concatenates a given AffineTransform to this transform.
* @throws IllegalArgumentException if Tx is null
*/
public void preConcatenate(AffineTransform Tx) {
if ( Tx == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
// Extend Tx: Tx.m20 = 0, Tx.m21 = 0, Tx.m22 = 1
double tx_m00 = Tx.getScaleX();
double tx_m01 = Tx.getShearX();
double tx_m02 = Tx.getTranslateX();
double tx_m10 = Tx.getShearY();
double tx_m11 = Tx.getScaleY();
double tx_m12 = Tx.getTranslateY();
double m00p = tx_m00*m00 + tx_m10*m01;
double m01p = tx_m01*m00 + tx_m11*m01;
double m02p = tx_m02*m00 + tx_m12*m01 + m02;
double m10p = tx_m00*m10 + tx_m10*m11;
double m11p = tx_m01*m10 + tx_m11*m11;
double m12p = tx_m02*m10 + tx_m12*m11 + m12;
double m20p = tx_m00*m20 + tx_m10*m21;
double m21p = tx_m01*m20 + tx_m11*m21;
double m22p = tx_m02*m20 + tx_m12*m21 + m22;
m00 = m00p;
m10 = m10p;
m20 = m20p;
m01 = m01p;
m11 = m11p;
m21 = m21p;
m02 = m02p;
m12 = m12p;
m22 = m22p;
}
/**
* Pre-concatenates a given PerspectiveTransform to this transform.
* @throws IllegalArgumentException if Tx is null
*/
public void preConcatenate(PerspectiveTransform Tx) {
if ( Tx == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
double m00p = Tx.m00*m00 + Tx.m10*m01 + Tx.m20*m02;
double m10p = Tx.m00*m10 + Tx.m10*m11 + Tx.m20*m12;
double m20p = Tx.m00*m20 + Tx.m10*m21 + Tx.m20*m22;
double m01p = Tx.m01*m00 + Tx.m11*m01 + Tx.m21*m02;
double m11p = Tx.m01*m10 + Tx.m11*m11 + Tx.m21*m12;
double m21p = Tx.m01*m20 + Tx.m11*m21 + Tx.m21*m22;
double m02p = Tx.m02*m00 + Tx.m12*m01 + Tx.m22*m02;
double m12p = Tx.m02*m10 + Tx.m12*m11 + Tx.m22*m12;
double m22p = Tx.m02*m20 + Tx.m12*m21 + Tx.m22*m22;
m00 = m00p;
m10 = m10p;
m20 = m20p;
m01 = m01p;
m11 = m11p;
m21 = m21p;
m02 = m02p;
m12 = m12p;
m22 = m22p;
}
/**
* Returns a new PerpectiveTransform that is the inverse
* of the current transform.
* @throws NoninvertibleTransformException if transform cannot be inverted
*/
public PerspectiveTransform createInverse()
throws NoninvertibleTransformException, CloneNotSupportedException {
PerspectiveTransform tx = (PerspectiveTransform)clone();
tx.makeAdjoint();
if (Math.abs(tx.m22) < PERSPECTIVE_DIVIDE_EPSILON) {
throw new NoninvertibleTransformException(JaiI18N.getString("PerspectiveTransform0"));
}
tx.normalize();
return tx;
}
/**
* Returns a new PerpectiveTransform that is the adjoint,
* of the current transform. The adjoint is defined as
* the matrix of cofactors, which in turn are the determinants
* of the submatrices defined by removing the row and column
* of each element from the original matrix in turn.
*
* <p> The adjoint is a scalar multiple of the inverse matrix.
* Because points to be transformed are converted into homogeneous
* coordinates, where scalar factors are irrelevant, the adjoint
* may be used in place of the true inverse. Since it is unnecessary
* to normalize the adjoint, it is both faster to compute and more
* numerically stable than the true inverse.
*/
public PerspectiveTransform createAdjoint()
throws CloneNotSupportedException{
PerspectiveTransform tx = (PerspectiveTransform)clone();
tx.makeAdjoint();
return tx;
}
/**
* Transforms the specified ptSrc and stores the result in ptDst.
* If ptDst is null, a new Point2D object will be allocated before
* storing. In either case, ptDst containing the transformed point
* is returned for convenience.
* Note that ptSrc and ptDst can the same. In this case, the input
* point will be overwritten with the transformed point.
*
* @param ptSrc The array containing the source point objects.
* @param ptDst The array where the transform point objects are returned.
* @throws IllegalArgumentException if ptSrc is null
*/
public Point2D transform(Point2D ptSrc, Point2D ptDst) {
if ( ptSrc == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (ptDst == null) {
if (ptSrc instanceof Point2D.Double) {
ptDst = new Point2D.Double();
} else {
ptDst = new Point2D.Float();
}
}
double x = ptSrc.getX();
double y = ptSrc.getY();
double w = m20 * x + m21 * y + m22;
ptDst.setLocation((m00 * x + m01 * y + m02) / w,
(m10 * x + m11 * y + m12) / w);
return ptDst;
}
/**
* Transforms an array of point objects by this transform.
* @param ptSrc The array containing the source point objects.
* @param ptDst The array where the transform point objects are returned.
* @param srcOff The offset to the first point object to be transformed
* in the source array.
* @param dstOff The offset to the location where the first transformed
* point object is stored in the destination array.
* @param numPts The number of point objects to be transformed.
* @throws IllegalArgumentException if ptSrc is null
* @throws IllegalArgumentException if ptDst is null
* @throws ArrayIndexOutOfBoundsException if ptSrc is too small
*/
public void transform(Point2D[] ptSrc, int srcOff,
Point2D[] ptDst, int dstOff,
int numPts) {
if ( ptSrc == null || ptDst == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
while (numPts-- > 0) {
/* Copy source coords into local variables in case src == dst. */
Point2D src = ptSrc[srcOff++];
Point2D dst = ptDst[dstOff++];
if (dst == null) {
if (src instanceof Point2D.Double) {
dst = new Point2D.Double();
} else {
dst = new Point2D.Float();
}
ptDst[dstOff - 1] = dst;
}
double x = src.getX();
double y = src.getY();
double w = m20 * x + m21 * y + m22;
if (w == 0) {
dst.setLocation(x, y);
} else {
dst.setLocation((m00 * x + m01 * y + m02) / w,
(m10 * x + m11 * y + m12) / w);
}
}
}
/**
* Transforms an array of floating point coordinates by this transform.
* @param srcPts The array containing the source point coordinates.
* Each point is stored as a pair of x,y coordinates.
* @param srcOff The offset to the first point to be transformed
* in the source array.
* @param dstPts The array where the transformed point coordinates are
* returned. Each point is stored as a pair of x,y coordinates.
* @param dstOff The offset to the location where the first transformed
* point is stored in the destination array.
* @param numPts The number of points to be transformed.
* @throws IllegalArgumentException if srcPts is null
* @throws ArrayIndexOutOfBoundsException if srcPts is too small
*/
public void transform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts) {
if ( srcPts == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (dstPts == null) {
dstPts = new float[numPts * 2 + dstOff];
}
while (numPts-- > 0) {
float x = srcPts[srcOff++];
float y = srcPts[srcOff++];
double w = m20 * x + m21 * y + m22;
if (w == 0) {
dstPts[dstOff++] = x;
dstPts[dstOff++] = y;
} else {
dstPts[dstOff++] = (float)((m00 * x + m01 * y + m02) / w);
dstPts[dstOff++] = (float)((m10 * x + m11 * y + m12) / w);
}
}
}
/**
* Transforms an array of double precision coordinates by this transform.
* @param srcPts The array containing the source point coordinates.
* Each point is stored as a pair of x,y coordinates.
* @param dstPts The array where the transformed point coordinates are
* returned. Each point is stored as a pair of x,y coordinates.
* @param srcOff The offset to the first point to be transformed
* in the source array.
* @param dstOff The offset to the location where the first transformed
* point is stored in the destination array.
* @param numPts The number of point objects to be transformed.
* @throws IllegalArgumentException if srcPts is null
* @throws ArrayIndexOutOfBoundsException if srcPts is too small
*/
public void transform(double[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts) {
if ( srcPts == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (dstPts == null) {
dstPts = new double[numPts * 2 + dstOff];
}
while (numPts-- > 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
double w = m20 * x + m21 * y + m22;
if (w == 0) {
dstPts[dstOff++] = x;
dstPts[dstOff++] = y;
} else {
dstPts[dstOff++] = (m00 * x + m01 * y + m02) / w;
dstPts[dstOff++] = (m10 * x + m11 * y + m12) / w;
}
}
}
/**
* Transforms an array of floating point coordinates by this transform,
* storing the results into an array of doubles.
* @param srcPts The array containing the source point coordinates.
* Each point is stored as a pair of x,y coordinates.
* @param srcOff The offset to the first point to be transformed
* in the source array.
* @param dstPts The array where the transformed point coordinates are
* returned. Each point is stored as a pair of x,y coordinates.
* @param dstOff The offset to the location where the first transformed
* point is stored in the destination array.
* @param numPts The number of points to be transformed.
* @throws IllegalArgumentException if srcPts is null
* @throws ArrayIndexOutOfBoundsException if srcPts is too small
*/
public void transform(float[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts) {
if ( srcPts == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (dstPts == null) {
dstPts = new double[numPts * 2 + dstOff];
}
while (numPts-- > 0) {
float x = srcPts[srcOff++];
float y = srcPts[srcOff++];
double w = m20 * x + m21 * y + m22;
if (w == 0) {
dstPts[dstOff++] = x;
dstPts[dstOff++] = y;
} else {
dstPts[dstOff++] = (m00 * x + m01 * y + m02) / w;
dstPts[dstOff++] = (m10 * x + m11 * y + m12) / w;
}
}
}
/**
* Transforms an array of double precision coordinates by this transform,
* storing the results into an array of floats.
* @param srcPts The array containing the source point coordinates.
* Each point is stored as a pair of x,y coordinates.
* @param dstPts The array where the transformed point coordinates are
* returned. Each point is stored as a pair of x,y coordinates.
* @param srcOff The offset to the first point to be transformed
* in the source array.
* @param dstOff The offset to the location where the first transformed
* point is stored in the destination array.
* @param numPts The number of point objects to be transformed.
* @throws IllegalArgumentException if srcPts is null
* @throws ArrayIndexOutOfBoundsException if srcPts is too small
*/
public void transform(double[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts) {
if ( srcPts == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (dstPts == null) {
dstPts = new float[numPts * 2 + dstOff];
}
while (numPts-- > 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
double w = m20 * x + m21 * y + m22;
if (w == 0) {
dstPts[dstOff++] = (float)x;
dstPts[dstOff++] = (float)y;
} else {
dstPts[dstOff++] = (float)((m00 * x + m01 * y + m02) / w);
dstPts[dstOff++] = (float)((m10 * x + m11 * y + m12) / w);
}
}
}
/**
* Inverse transforms the specified ptSrc and stores the result in ptDst.
* If ptDst is null, a new Point2D object will be allocated before
* storing. In either case, ptDst containing the transformed point
* is returned for convenience.
* Note that ptSrc and ptDst can the same. In this case, the input
* point will be overwritten with the transformed point.
* @param ptSrc The point to be inverse transformed.
* @param ptDst The resulting transformed point.
* @throws NoninvertibleTransformException if the matrix cannot be
* inverted.
* @throws IllegalArgumentException if ptSrc is null
*/
public Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)
throws NoninvertibleTransformException
{
if ( ptSrc == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (ptDst == null) {
if (ptSrc instanceof Point2D.Double) {
ptDst = new Point2D.Double();
} else {
ptDst = new Point2D.Float();
}
}
// Copy source coords into local variables in case src == dst
double x = ptSrc.getX();
double y = ptSrc.getY();
double tmp_x = (m11*m22 - m12*m21) * x +
(m02*m21 - m01*m22) * y +
(m01*m12 - m02*m11);
double tmp_y = (m12*m20 - m10*m22) * x +
(m00*m22 - m02*m20) * y +
(m02*m10 - m00*m12);
double w = (m10*m21 - m11*m20) * x +
(m01*m20 - m00*m21) * y +
(m00*m11 - m01*m10);
double wabs = w;
if (w < 0) {
wabs = - w;
}
if (wabs < PERSPECTIVE_DIVIDE_EPSILON) {
throw new
NoninvertibleTransformException(
JaiI18N.getString("PerspectiveTransform1"));
}
ptDst.setLocation(tmp_x/w, tmp_y/w);
return ptDst;
}
/**
* Inverse transforms an array of double precision coordinates by
* this transform.
* @param srcPts The array containing the source point coordinates.
* Each point is stored as a pair of x,y coordinates.
* @param dstPts The array where the transformed point coordinates are
* returned. Each point is stored as a pair of x,y coordinates.
* @param srcOff The offset to the first point to be transformed
* in the source array.
* @param dstOff The offset to the location where the first transformed
* point is stored in the destination array.
* @param numPts The number of point objects to be transformed.
* @throws NoninvertibleTransformException if the matrix cannot be
* inverted.
* @throws IllegalArgumentException if srcPts is null
* @throws ArrayIndexOutOfBoundsException if srcPts is too small
* @throws NoninvertibleTransformException transform cannot be inverted
*/
public void inverseTransform(double[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts)
throws NoninvertibleTransformException
{
if ( srcPts == null ) {
throw new IllegalArgumentException(JaiI18N.getString("Generic0"));
}
if (dstPts == null) {
dstPts = new double[numPts * 2 + dstOff];
}
while (numPts-- > 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
double tmp_x = (m11*m22 - m12*m21) * x +
(m02*m21 - m01*m22) * y +
(m01*m12 - m02*m11);
double tmp_y = (m12*m20 - m10*m22) * x +
(m00*m22 - m02*m20) * y +
(m02*m10 - m00*m12);
double w = (m10*m21 - m11*m20) * x +
(m01*m20 - m00*m21) * y +
(m00*m11 - m01*m10);
double wabs = w;
if (w < 0) {
wabs = - w;
}
if (wabs < PERSPECTIVE_DIVIDE_EPSILON) {
throw new NoninvertibleTransformException(
JaiI18N.getString("PerspectiveTransform1"));
}
dstPts[dstOff++] = tmp_x / w;
dstPts[dstOff++] = tmp_y / w;
}
}
/**
* Returns a String that represents the value of this Object.
*/
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("Perspective transform matrix\n");
sb.append(this.m00);
sb.append("\t");
sb.append(this.m01);
sb.append("\t");
sb.append(this.m02);
sb.append("\n");
sb.append(this.m10);
sb.append("\t");
sb.append(this.m11);
sb.append("\t");
sb.append(this.m12);
sb.append("\n");
sb.append(this.m20);
sb.append("\t");
sb.append(this.m21);
sb.append("\t");
sb.append(this.m22);
sb.append("\n");
return new String(sb);
}
/**
* Returns the boolean true value if this PerspectiveTransform is an
* identity transform. Returns false otherwise.
*/
public boolean isIdentity() {
return m01 == 0.0 && m02 == 0.0 &&
m10 == 0.0 && m12 == 0.0 &&
m20 == 0.0 && m21 == 0.0 &&
m22 != 0.0 && m00/m22 == 1.0 && m11/m22 == 1.0;
}
/**
* Returns a copy of this PerspectiveTransform object.
*/
public Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
/**
* Tests if this PerspectiveTransform equals a supplied one.
*
* @param obj The PerspectiveTransform to be compared to this one.
*/
public boolean equals(Object obj) {
if (!(obj instanceof PerspectiveTransform)) {
return false;
}
PerspectiveTransform a = (PerspectiveTransform)obj;
return ((m00 == a.m00) && (m10 == a.m10) && (m20 == a.m20) &&
(m01 == a.m01) && (m11 == a.m11) && (m21 == a.m21) &&
(m02 == a.m02) && (m12 == a.m12) && (m22 == a.m22));
}
}
|