Blame view

atmega16u2/custom/lufa-LUFA-170418/Projects/Webserver/Lib/uip/uip.c 58 KB
8a7dc1f5   adorian   Seance 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
  #define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/
  
  /**
   * \addtogroup uip
   * @{
   */
  
  /**
   * \file
   * The uIP TCP/IP stack code.
   * \author Adam Dunkels <adam@dunkels.com>
   */
  
  /*
   * Copyright (c) 2001-2003, Adam Dunkels.
   * All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in the
   *    documentation and/or other materials provided with the distribution.
   * 3. The name of the author may not be used to endorse or promote
   *    products derived from this software without specific prior
   *    written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
   * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
   * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   * This file is part of the uIP TCP/IP stack.
   *
   * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $
   *
   */
  
  /*
   * uIP is a small implementation of the IP, UDP and TCP protocols (as
   * well as some basic ICMP stuff). The implementation couples the IP,
   * UDP, TCP and the application layers very tightly. To keep the size
   * of the compiled code down, this code frequently uses the goto
   * statement. While it would be possible to break the uip_process()
   * function into many smaller functions, this would increase the code
   * size because of the overhead of parameter passing and the fact that
   * the optimizer would not be as efficient.
   *
   * The principle is that we have a small buffer, called the uip_buf,
   * in which the device driver puts an incoming packet. The TCP/IP
   * stack parses the headers in the packet, and calls the
   * application. If the remote host has sent data to the application,
   * this data is present in the uip_buf and the application read the
   * data from there. It is up to the application to put this data into
   * a byte stream if needed. The application will not be fed with data
   * that is out of sequence.
   *
   * If the application whishes to send data to the peer, it should put
   * its data into the uip_buf. The uip_appdata pointer points to the
   * first available byte. The TCP/IP stack will calculate the
   * checksums, and fill in the necessary header fields and finally send
   * the packet back to the peer.
  */
  
  #include "uip.h"
  #include "uipopt.h"
  #include "uip_arp.h"
  
  #if !UIP_CONF_IPV6 /* If UIP_CONF_IPV6 is defined, we compile the
  		      uip6.c file instead of this one. Therefore
  		      this #ifndef removes the entire compilation
  		      output of the uip.c file */
  
  
  #if UIP_CONF_IPV6
  #include "net/uip-neighbor.h"
  #endif /* UIP_CONF_IPV6 */
  
  #include <string.h>
  
  /*---------------------------------------------------------------------------*/
  /* Variable definitions. */
  
  
  /* The IP address of this host. If it is defined to be fixed (by
     setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set
     here. Otherwise, the address */
  #if UIP_FIXEDADDR > 0
  const uip_ipaddr_t uip_hostaddr =
    { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 };
  const uip_ipaddr_t uip_draddr =
    { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 };
  const uip_ipaddr_t uip_netmask =
    { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 };
  #else
  uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask;
  #endif /* UIP_FIXEDADDR */
  
  const uip_ipaddr_t uip_broadcast_addr =
  #if UIP_CONF_IPV6
    { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
  #else /* UIP_CONF_IPV6 */
    { { 0xff, 0xff, 0xff, 0xff } };
  #endif /* UIP_CONF_IPV6 */
  const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } };
  
  #if UIP_FIXEDETHADDR
  const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0,
  					  UIP_ETHADDR1,
  					  UIP_ETHADDR2,
  					  UIP_ETHADDR3,
  					  UIP_ETHADDR4,
  					  UIP_ETHADDR5}};
  #else
  struct uip_eth_addr uip_ethaddr = {{0,0,0,0,0,0}};
  #endif
  
  #ifndef UIP_CONF_EXTERNAL_BUFFER
  u8_t uip_buf[UIP_BUFSIZE + 2];   /* The packet buffer that contains
  				    incoming packets. */
  #endif /* UIP_CONF_EXTERNAL_BUFFER */
  
  void *uip_appdata;               /* The uip_appdata pointer points to
  				    application data. */
  void *uip_sappdata;              /* The uip_appdata pointer points to
  				    the application data which is to
  				    be sent. */
  #if UIP_URGDATA > 0
  void *uip_urgdata;               /* The uip_urgdata pointer points to
     				    urgent data (out-of-band data), if
     				    present. */
  u16_t uip_urglen, uip_surglen;
  #endif /* UIP_URGDATA > 0 */
  
  u16_t uip_len, uip_slen;
                               /* The uip_len is either 8 or 16 bits,
  				depending on the maximum packet
  				size. */
  
  u8_t uip_flags;     /* The uip_flags variable is used for
  				communication between the TCP/IP stack
  				and the application program. */
  struct uip_conn *uip_conn;   /* uip_conn always points to the current
  				connection. */
  
  struct uip_conn uip_conns[UIP_CONNS];
                               /* The uip_conns array holds all TCP
  				connections. */
  u16_t uip_listenports[UIP_LISTENPORTS];
                               /* The uip_listenports list all currently
  				listening ports. */
  #if UIP_UDP
  struct uip_udp_conn *uip_udp_conn;
  struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
  #endif /* UIP_UDP */
  
  static u16_t ipid;           /* Ths ipid variable is an increasing
  				number that is used for the IP ID
  				field. */
  
  void uip_setipid(u16_t id) { ipid = id; }
  
  static u8_t iss[4];          /* The iss variable is used for the TCP
  				initial sequence number. */
  
  #if UIP_ACTIVE_OPEN
  static u16_t lastport;       /* Keeps track of the last port used for
  				a new connection. */
  #endif /* UIP_ACTIVE_OPEN */
  
  /* Temporary variables. */
  u8_t uip_acc32[4];
  static u8_t c, opt;
  static u16_t tmp16;
  
  /* Structures and definitions. */
  #define TCP_FIN 0x01
  #define TCP_SYN 0x02
  #define TCP_RST 0x04
  #define TCP_PSH 0x08
  #define TCP_ACK 0x10
  #define TCP_URG 0x20
  #define TCP_CTL 0x3f
  
  #define TCP_OPT_END     0   /* End of TCP options list */
  #define TCP_OPT_NOOP    1   /* "No-operation" TCP option */
  #define TCP_OPT_MSS     2   /* Maximum segment size TCP option */
  
  #define TCP_OPT_MSS_LEN 4   /* Length of TCP MSS option. */
  
  #define ICMP_ECHO_REPLY 0
  #define ICMP_ECHO       8
  
  #define ICMP_DEST_UNREACHABLE        3
  #define ICMP_PORT_UNREACHABLE        3
  
  #define ICMP6_ECHO_REPLY             129
  #define ICMP6_ECHO                   128
  #define ICMP6_NEIGHBOR_SOLICITATION  135
  #define ICMP6_NEIGHBOR_ADVERTISEMENT 136
  
  #define ICMP6_FLAG_S (1 << 6)
  
  #define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1
  #define ICMP6_OPTION_TARGET_LINK_ADDRESS 2
  
  
  /* Macros. */
  #define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN])
  #define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0])
  #define ICMPBUF ((struct uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN])
  #define UDPBUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN])
  
  
  #if UIP_STATISTICS == 1
  struct uip_stats uip_stat;
  #define UIP_STAT(s) s
  #else
  #define UIP_STAT(s)
  #endif /* UIP_STATISTICS == 1 */
  
  #if UIP_LOGGING == 1
  #include <stdio.h>
  void uip_log(char *msg);
  #define UIP_LOG(m) uip_log(m)
  #else
  #define UIP_LOG(m)
  #endif /* UIP_LOGGING == 1 */
  
  #if ! UIP_ARCH_ADD32
  void
  uip_add32(u8_t *op32, u16_t op16)
  {
    uip_acc32[3] = op32[3] + (op16 & 0xff);
    uip_acc32[2] = op32[2] + (op16 >> 8);
    uip_acc32[1] = op32[1];
    uip_acc32[0] = op32[0];
  
    if(uip_acc32[2] < (op16 >> 8)) {
      ++uip_acc32[1];
      if(uip_acc32[1] == 0) {
        ++uip_acc32[0];
      }
    }
  
  
    if(uip_acc32[3] < (op16 & 0xff)) {
      ++uip_acc32[2];
      if(uip_acc32[2] == 0) {
        ++uip_acc32[1];
        if(uip_acc32[1] == 0) {
  	++uip_acc32[0];
        }
      }
    }
  }
  
  #endif /* UIP_ARCH_ADD32 */
  
  #if ! UIP_ARCH_CHKSUM
  /*---------------------------------------------------------------------------*/
  static u16_t
  chksum(u16_t sum, const u8_t *data, u16_t len)
  {
    u16_t t;
    const u8_t *dataptr;
    const u8_t *last_byte;
  
    dataptr = data;
    last_byte = data + len - 1;
  
    while(dataptr < last_byte) {	/* At least two more bytes */
      t = (dataptr[0] << 8) + dataptr[1];
      sum += t;
      if(sum < t) {
        sum++;		/* carry */
      }
      dataptr += 2;
    }
  
    if(dataptr == last_byte) {
      t = (dataptr[0] << 8) + 0;
      sum += t;
      if(sum < t) {
        sum++;		/* carry */
      }
    }
  
    /* Return sum in host byte order. */
    return sum;
  }
  /*---------------------------------------------------------------------------*/
  u16_t
  uip_chksum(u16_t *data, u16_t len)
  {
    return htons(chksum(0, (u8_t *)data, len));
  }
  /*---------------------------------------------------------------------------*/
  #ifndef UIP_ARCH_IPCHKSUM
  u16_t
  uip_ipchksum(void)
  {
    u16_t sum;
  
    sum = chksum(0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN);
    DEBUG_PRINTF("uip_ipchksum: sum 0x%04x\n", sum);
    return (sum == 0) ? 0xffff : htons(sum);
  }
  #endif
  /*---------------------------------------------------------------------------*/
  static u16_t
  upper_layer_chksum(u8_t proto)
  {
    u16_t upper_layer_len;
    u16_t sum;
  
  #if UIP_CONF_IPV6
    upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]);
  #else /* UIP_CONF_IPV6 */
    upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN;
  #endif /* UIP_CONF_IPV6 */
  
    /* First sum pseudo-header. */
  
    /* IP protocol and length fields. This addition cannot carry. */
    sum = upper_layer_len + proto;
    /* Sum IP source and destination addresses. */
    sum = chksum(sum, (u8_t *)&BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t));
  
    /* Sum TCP header and data. */
    sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN],
  	       upper_layer_len);
  
    return (sum == 0) ? 0xffff : htons(sum);
  }
  /*---------------------------------------------------------------------------*/
  #if UIP_CONF_IPV6
  u16_t
  uip_icmp6chksum(void)
  {
    return upper_layer_chksum(UIP_PROTO_ICMP6);
  
  }
  #endif /* UIP_CONF_IPV6 */
  /*---------------------------------------------------------------------------*/
  u16_t
  uip_tcpchksum(void)
  {
    return upper_layer_chksum(UIP_PROTO_TCP);
  }
  /*---------------------------------------------------------------------------*/
  #if UIP_UDP_CHECKSUMS
  u16_t
  uip_udpchksum(void)
  {
    return upper_layer_chksum(UIP_PROTO_UDP);
  }
  #endif /* UIP_UDP_CHECKSUMS */
  #endif /* UIP_ARCH_CHKSUM */
  /*---------------------------------------------------------------------------*/
  void
  uip_init(void)
  {
    for(c = 0; c < UIP_LISTENPORTS; ++c) {
      uip_listenports[c] = 0;
    }
    for(c = 0; c < UIP_CONNS; ++c) {
      uip_conns[c].tcpstateflags = UIP_CLOSED;
    }
  #if UIP_ACTIVE_OPEN
    lastport = 1024;
  #endif /* UIP_ACTIVE_OPEN */
  
  #if UIP_UDP
    for(c = 0; c < UIP_UDP_CONNS; ++c) {
      uip_udp_conns[c].lport = 0;
    }
  #endif /* UIP_UDP */
  
  
    /* IPv4 initialization. */
  #if UIP_FIXEDADDR == 0
    /*  uip_hostaddr[0] = uip_hostaddr[1] = 0;*/
  #endif /* UIP_FIXEDADDR */
  
  }
  /*---------------------------------------------------------------------------*/
  #if UIP_ACTIVE_OPEN
  struct uip_conn *
  uip_connect(uip_ipaddr_t *ripaddr, u16_t rport)
  {
    register struct uip_conn *conn, *cconn;
  
    /* Find an unused local port. */
   again:
    ++lastport;
  
    if(lastport >= 32000) {
      lastport = 4096;
    }
  
    /* Check if this port is already in use, and if so try to find
       another one. */
    for(c = 0; c < UIP_CONNS; ++c) {
      conn = &uip_conns[c];
      if(conn->tcpstateflags != UIP_CLOSED &&
         conn->lport == htons(lastport)) {
        goto again;
      }
    }
  
    conn = 0;
    for(c = 0; c < UIP_CONNS; ++c) {
      cconn = &uip_conns[c];
      if(cconn->tcpstateflags == UIP_CLOSED) {
        conn = cconn;
        break;
      }
      if(cconn->tcpstateflags == UIP_TIME_WAIT) {
        if(conn == 0 ||
  	 cconn->timer > conn->timer) {
  	conn = cconn;
        }
      }
    }
  
    if(conn == 0) {
      return 0;
    }
  
    conn->tcpstateflags = UIP_SYN_SENT;
  
    conn->snd_nxt[0] = iss[0];
    conn->snd_nxt[1] = iss[1];
    conn->snd_nxt[2] = iss[2];
    conn->snd_nxt[3] = iss[3];
  
    conn->initialmss = conn->mss = UIP_TCP_MSS;
  
    conn->len = 1;   /* TCP length of the SYN is one. */
    conn->nrtx = 0;
    conn->timer = 1; /* Send the SYN next time around. */
    conn->rto = UIP_RTO;
    conn->sa = 0;
    conn->sv = 16;   /* Initial value of the RTT variance. */
    conn->lport = htons(lastport);
    conn->rport = rport;
    uip_ipaddr_copy(&conn->ripaddr, ripaddr);
  
    return conn;
  }
  #endif /* UIP_ACTIVE_OPEN */
  /*---------------------------------------------------------------------------*/
  #if UIP_UDP
  struct uip_udp_conn *
  uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport)
  {
    register struct uip_udp_conn *conn;
  
    /* Find an unused local port. */
   again:
    ++lastport;
  
    if(lastport >= 32000) {
      lastport = 4096;
    }
  
    for(c = 0; c < UIP_UDP_CONNS; ++c) {
      if(uip_udp_conns[c].lport == htons(lastport)) {
        goto again;
      }
    }
  
  
    conn = 0;
    for(c = 0; c < UIP_UDP_CONNS; ++c) {
      if(uip_udp_conns[c].lport == 0) {
        conn = &uip_udp_conns[c];
        break;
      }
    }
  
    if(conn == 0) {
      return 0;
    }
  
    conn->lport = HTONS(lastport);
    conn->rport = rport;
    if(ripaddr == NULL) {
      memset(&conn->ripaddr, 0, sizeof(uip_ipaddr_t));
    } else {
      uip_ipaddr_copy(&conn->ripaddr, ripaddr);
    }
    conn->ttl = UIP_TTL;
  
    return conn;
  }
  #endif /* UIP_UDP */
  /*---------------------------------------------------------------------------*/
  void
  uip_unlisten(u16_t port)
  {
    for(c = 0; c < UIP_LISTENPORTS; ++c) {
      if(uip_listenports[c] == port) {
        uip_listenports[c] = 0;
        return;
      }
    }
  }
  /*---------------------------------------------------------------------------*/
  void
  uip_listen(u16_t port)
  {
    for(c = 0; c < UIP_LISTENPORTS; ++c) {
      if(uip_listenports[c] == 0) {
        uip_listenports[c] = port;
        return;
      }
    }
  }
  /*---------------------------------------------------------------------------*/
  /* XXX: IP fragment reassembly: not well-tested. */
  
  #if UIP_REASSEMBLY && !UIP_CONF_IPV6
  #define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN)
  static u8_t uip_reassbuf[UIP_REASS_BUFSIZE];
  static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)];
  static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f,
  				    0x0f, 0x07, 0x03, 0x01};
  static u16_t uip_reasslen;
  static u8_t uip_reassflags;
  #define UIP_REASS_FLAG_LASTFRAG 0x01
  static u8_t uip_reasstmr;
  
  #define IP_MF   0x20
  
  static u8_t
  uip_reass(void)
  {
    u16_t offset, len;
    u16_t i;
  
    /* If ip_reasstmr is zero, no packet is present in the buffer, so we
       write the IP header of the fragment into the reassembly
       buffer. The timer is updated with the maximum age. */
    if(uip_reasstmr == 0) {
      memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN);
      uip_reasstmr = UIP_REASS_MAXAGE;
      uip_reassflags = 0;
      /* Clear the bitmap. */
      memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap));
    }
  
    /* Check if the incoming fragment matches the one currently present
       in the reasembly buffer. If so, we proceed with copying the
       fragment into the buffer. */
    if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] &&
       BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
       BUF->destipaddr[0] == FBUF->destipaddr[0] &&
       BUF->destipaddr[1] == FBUF->destipaddr[1] &&
       BUF->ipid[0] == FBUF->ipid[0] &&
       BUF->ipid[1] == FBUF->ipid[1]) {
  
      len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4;
      offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8;
  
      /* If the offset or the offset + fragment length overflows the
         reassembly buffer, we discard the entire packet. */
      if(offset > UIP_REASS_BUFSIZE ||
         offset + len > UIP_REASS_BUFSIZE) {
        uip_reasstmr = 0;
        goto nullreturn;
      }
  
      /* Copy the fragment into the reassembly buffer, at the right
         offset. */
      memcpy(&uip_reassbuf[UIP_IPH_LEN + offset],
  	   (char *)BUF + (int)((BUF->vhl & 0x0f) * 4),
  	   len);
  
      /* Update the bitmap. */
      if(offset / (8 * 8) == (offset + len) / (8 * 8)) {
        /* If the two endpoints are in the same byte, we only update
  	 that byte. */
  
        uip_reassbitmap[offset / (8 * 8)] |=
  	     bitmap_bits[(offset / 8 ) & 7] &
  	     ~bitmap_bits[((offset + len) / 8 ) & 7];
      } else {
        /* If the two endpoints are in different bytes, we update the
  	 bytes in the endpoints and fill the stuff in-between with
  	 0xff. */
        uip_reassbitmap[offset / (8 * 8)] |=
  	bitmap_bits[(offset / 8 ) & 7];
        for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
  	uip_reassbitmap[i] = 0xff;
        }
        uip_reassbitmap[(offset + len) / (8 * 8)] |=
  	~bitmap_bits[((offset + len) / 8 ) & 7];
      }
  
      /* If this fragment has the More Fragments flag set to zero, we
         know that this is the last fragment, so we can calculate the
         size of the entire packet. We also set the
         IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
         the final fragment. */
  
      if((BUF->ipoffset[0] & IP_MF) == 0) {
        uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
        uip_reasslen = offset + len;
      }
  
      /* Finally, we check if we have a full packet in the buffer. We do
         this by checking if we have the last fragment and if all bits
         in the bitmap are set. */
      if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) {
        /* Check all bytes up to and including all but the last byte in
  	 the bitmap. */
        for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) {
  	if(uip_reassbitmap[i] != 0xff) {
  	  goto nullreturn;
  	}
        }
        /* Check the last byte in the bitmap. It should contain just the
  	 right amount of bits. */
        if(uip_reassbitmap[uip_reasslen / (8 * 8)] !=
  	 (u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) {
  	goto nullreturn;
        }
  
        /* If we have come this far, we have a full packet in the
  	 buffer, so we allocate a pbuf and copy the packet into it. We
  	 also reset the timer. */
        uip_reasstmr = 0;
        memcpy(BUF, FBUF, uip_reasslen);
  
        /* Pretend to be a "normal" (i.e., not fragmented) IP packet
  	 from now on. */
        BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
        BUF->len[0] = uip_reasslen >> 8;
        BUF->len[1] = uip_reasslen & 0xff;
        BUF->ipchksum = 0;
        BUF->ipchksum = ~(uip_ipchksum());
  
        return uip_reasslen;
      }
    }
  
   nullreturn:
    return 0;
  }
  #endif /* UIP_REASSEMBLY */
  /*---------------------------------------------------------------------------*/
  static void
  uip_add_rcv_nxt(u16_t n)
  {
    uip_add32(uip_conn->rcv_nxt, n);
    uip_conn->rcv_nxt[0] = uip_acc32[0];
    uip_conn->rcv_nxt[1] = uip_acc32[1];
    uip_conn->rcv_nxt[2] = uip_acc32[2];
    uip_conn->rcv_nxt[3] = uip_acc32[3];
  }
  /*---------------------------------------------------------------------------*/
  void
  uip_process(u8_t flag)
  {
    register struct uip_conn *uip_connr = uip_conn;
  
  #if UIP_UDP
    if(flag == UIP_UDP_SEND_CONN) {
      goto udp_send;
    }
  #endif /* UIP_UDP */
  
    uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];
  
    /* Check if we were invoked because of a poll request for a
       particular connection. */
    if(flag == UIP_POLL_REQUEST) {
      if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED &&
         !uip_outstanding(uip_connr)) {
  	uip_len = uip_slen = 0;
  	uip_flags = UIP_POLL;
  	UIP_APPCALL();
  	goto appsend;
      }
      goto drop;
  
      /* Check if we were invoked because of the periodic timer firing. */
    } else if(flag == UIP_TIMER) {
  #if UIP_REASSEMBLY
      if(uip_reasstmr != 0) {
        --uip_reasstmr;
      }
  #endif /* UIP_REASSEMBLY */
      /* Increase the initial sequence number. */
      if(++iss[3] == 0) {
        if(++iss[2] == 0) {
  	if(++iss[1] == 0) {
  	  ++iss[0];
  	}
        }
      }
  
      /* Reset the length variables. */
      uip_len = 0;
      uip_slen = 0;
  
      /* Check if the connection is in a state in which we simply wait
         for the connection to time out. If so, we increase the
         connection's timer and remove the connection if it times
         out. */
      if(uip_connr->tcpstateflags == UIP_TIME_WAIT ||
         uip_connr->tcpstateflags == UIP_FIN_WAIT_2) {
        ++(uip_connr->timer);
        if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) {
  	uip_connr->tcpstateflags = UIP_CLOSED;
        }
      } else if(uip_connr->tcpstateflags != UIP_CLOSED) {
        /* If the connection has outstanding data, we increase the
  	 connection's timer and see if it has reached the RTO value
  	 in which case we retransmit. */
        if(uip_outstanding(uip_connr)) {
  	if(uip_connr->timer-- == 0) {
  	  if(uip_connr->nrtx == UIP_MAXRTX ||
  	     ((uip_connr->tcpstateflags == UIP_SYN_SENT ||
  	       uip_connr->tcpstateflags == UIP_SYN_RCVD) &&
  	      uip_connr->nrtx == UIP_MAXSYNRTX)) {
  	    uip_connr->tcpstateflags = UIP_CLOSED;
  
  	    /* We call UIP_APPCALL() with uip_flags set to
  	       UIP_TIMEDOUT to inform the application that the
  	       connection has timed out. */
  	    uip_flags = UIP_TIMEDOUT;
  	    UIP_APPCALL();
  
  	    /* We also send a reset packet to the remote host. */
  	    BUF->flags = TCP_RST | TCP_ACK;
  	    goto tcp_send_nodata;
  	  }
  
  	  /* Exponential back-off. */
  	  uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4?
  					 4:
  					 uip_connr->nrtx);
  	  ++(uip_connr->nrtx);
  
  	  /* Ok, so we need to retransmit. We do this differently
  	     depending on which state we are in. In ESTABLISHED, we
  	     call upon the application so that it may prepare the
  	     data for the retransmit. In SYN_RCVD, we resend the
  	     SYNACK that we sent earlier and in LAST_ACK we have to
  	     retransmit our FINACK. */
  	  UIP_STAT(++uip_stat.tcp.rexmit);
  	  switch(uip_connr->tcpstateflags & UIP_TS_MASK) {
  	  case UIP_SYN_RCVD:
  	    /* In the SYN_RCVD state, we should retransmit our
                 SYNACK. */
  	    goto tcp_send_synack;
  
  #if UIP_ACTIVE_OPEN
  	  case UIP_SYN_SENT:
  	    /* In the SYN_SENT state, we retransmit out SYN. */
  	    BUF->flags = 0;
  	    goto tcp_send_syn;
  #endif /* UIP_ACTIVE_OPEN */
  
  	  case UIP_ESTABLISHED:
  	    /* In the ESTABLISHED state, we call upon the application
                 to do the actual retransmit after which we jump into
                 the code for sending out the packet (the apprexmit
                 label). */
  	    uip_flags = UIP_REXMIT;
  	    UIP_APPCALL();
  	    goto apprexmit;
  
  	  case UIP_FIN_WAIT_1:
  	  case UIP_CLOSING:
  	  case UIP_LAST_ACK:
  	    /* In all these states we should retransmit a FINACK. */
  	    goto tcp_send_finack;
  
  	  }
  	}
        } else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) {
  	/* If there was no need for a retransmission, we poll the
             application for new data. */
  	uip_len = uip_slen = 0;
  	uip_flags = UIP_POLL;
  	UIP_APPCALL();
  	goto appsend;
        }
      }
      goto drop;
    }
  #if UIP_UDP
    if(flag == UIP_UDP_TIMER) {
      if(uip_udp_conn->lport != 0) {
        uip_conn = NULL;
        uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
        uip_len = uip_slen = 0;
        uip_flags = UIP_POLL;
        UIP_UDP_APPCALL();
        goto udp_send;
      } else {
        goto drop;
      }
    }
  #endif
  
    /* This is where the input processing starts. */
    UIP_STAT(++uip_stat.ip.recv);
  
    /* Start of IP input header processing code. */
  
  #if UIP_CONF_IPV6
    /* Check validity of the IP header. */
    if((BUF->vtc & 0xf0) != 0x60)  { /* IP version and header length. */
      UIP_STAT(++uip_stat.ip.drop);
      UIP_STAT(++uip_stat.ip.vhlerr);
      UIP_LOG("ipv6: invalid version.");
      goto drop;
    }
  #else /* UIP_CONF_IPV6 */
    /* Check validity of the IP header. */
    if(BUF->vhl != 0x45)  { /* IP version and header length. */
      UIP_STAT(++uip_stat.ip.drop);
      UIP_STAT(++uip_stat.ip.vhlerr);
      UIP_LOG("ip: invalid version or header length.");
      goto drop;
    }
  #endif /* UIP_CONF_IPV6 */
  
    /* Check the size of the packet. If the size reported to us in
       uip_len is smaller the size reported in the IP header, we assume
       that the packet has been corrupted in transit. If the size of
       uip_len is larger than the size reported in the IP packet header,
       the packet has been padded and we set uip_len to the correct
       value.. */
  
    if((BUF->len[0] << 8) + BUF->len[1] <= uip_len) {
      uip_len = (BUF->len[0] << 8) + BUF->len[1];
  #if UIP_CONF_IPV6
      uip_len += 40; /* The length reported in the IPv6 header is the
  		      length of the payload that follows the
  		      header. However, uIP uses the uip_len variable
  		      for holding the size of the entire packet,
  		      including the IP header. For IPv4 this is not a
  		      problem as the length field in the IPv4 header
  		      contains the length of the entire packet. But
  		      for IPv6 we need to add the size of the IPv6
  		      header (40 bytes). */
  #endif /* UIP_CONF_IPV6 */
    } else {
      UIP_LOG("ip: packet shorter than reported in IP header.");
      goto drop;
    }
  
  #if !UIP_CONF_IPV6
    /* Check the fragment flag. */
    if((BUF->ipoffset[0] & 0x3f) != 0 ||
       BUF->ipoffset[1] != 0) {
  #if UIP_REASSEMBLY
      uip_len = uip_reass();
      if(uip_len == 0) {
        goto drop;
      }
  #else /* UIP_REASSEMBLY */
      UIP_STAT(++uip_stat.ip.drop);
      UIP_STAT(++uip_stat.ip.fragerr);
      UIP_LOG("ip: fragment dropped.");
      goto drop;
  #endif /* UIP_REASSEMBLY */
    }
  #endif /* UIP_CONF_IPV6 */
  
    if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
      /* If we are configured to use ping IP address configuration and
         hasn't been assigned an IP address yet, we accept all ICMP
         packets. */
  #if UIP_PINGADDRCONF && !UIP_CONF_IPV6
      if(BUF->proto == UIP_PROTO_ICMP) {
        UIP_LOG("ip: possible ping config packet received.");
        goto icmp_input;
      } else {
        UIP_LOG("ip: packet dropped since no address assigned.");
        goto drop;
      }
  #endif /* UIP_PINGADDRCONF */
  
    } else {
      /* If IP broadcast support is configured, we check for a broadcast
         UDP packet, which may be destined to us. */
  #if UIP_BROADCAST
      DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum());
      if(BUF->proto == UIP_PROTO_UDP &&
         uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr))
  	{
  		if (uip_ipaddr_cmp(&BUF->srcipaddr, &uip_all_zeroes_addr))
  		  uip_ipaddr_copy(&BUF->srcipaddr, &uip_broadcast_addr);
  
  		goto udp_input;
      }
  #endif /* UIP_BROADCAST */
  
      /* Check if the packet is destined for our IP address. */
  #if !UIP_CONF_IPV6
      if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr)) {
        UIP_STAT(++uip_stat.ip.drop);
        goto drop;
      }
  #else /* UIP_CONF_IPV6 */
      /* For IPv6, packet reception is a little trickier as we need to
         make sure that we listen to certain multicast addresses (all
         hosts multicast address, and the solicited-node multicast
         address) as well. However, we will cheat here and accept all
         multicast packets that are sent to the ff02::/16 addresses. */
      if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) &&
         BUF->destipaddr.u16[0] != HTONS(0xff02)) {
        UIP_STAT(++uip_stat.ip.drop);
        goto drop;
      }
  #endif /* UIP_CONF_IPV6 */
    }
  
  #if !UIP_CONF_IPV6
    if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header
  				    checksum. */
      UIP_STAT(++uip_stat.ip.drop);
      UIP_STAT(++uip_stat.ip.chkerr);
      UIP_LOG("ip: bad checksum.");
      goto drop;
    }
  #endif /* UIP_CONF_IPV6 */
  
    if(BUF->proto == UIP_PROTO_TCP) { /* Check for TCP packet. If so,
  				       proceed with TCP input
  				       processing. */
      goto tcp_input;
    }
  
  #if UIP_UDP
    if(BUF->proto == UIP_PROTO_UDP) {
      goto udp_input;
    }
  #endif /* UIP_UDP */
  
  #if !UIP_CONF_IPV6
    /* ICMPv4 processing code follows. */
    if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from
  					here. */
      UIP_STAT(++uip_stat.ip.drop);
      UIP_STAT(++uip_stat.ip.protoerr);
      UIP_LOG("ip: neither tcp nor icmp.");
      goto drop;
    }
  
  #if UIP_PINGADDRCONF
   icmp_input:
  #endif /* UIP_PINGADDRCONF */
    UIP_STAT(++uip_stat.icmp.recv);
  
    /* ICMP echo (i.e., ping) processing. This is simple, we only change
       the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
       checksum before we return the packet. */
    if(ICMPBUF->type != ICMP_ECHO) {
      UIP_STAT(++uip_stat.icmp.drop);
      UIP_STAT(++uip_stat.icmp.typeerr);
      UIP_LOG("icmp: not icmp echo.");
      goto drop;
    }
  
    /* If we are configured to use ping IP address assignment, we use
       the destination IP address of this ping packet and assign it to
       yourself. */
  #if UIP_PINGADDRCONF
    if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
      uip_hostaddr = BUF->destipaddr;
    }
  #endif /* UIP_PINGADDRCONF */
  
    ICMPBUF->type = ICMP_ECHO_REPLY;
  
    if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) {
      ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1;
    } else {
      ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8);
    }
  
    /* Swap IP addresses. */
    uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
    uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
  
    UIP_STAT(++uip_stat.icmp.sent);
    BUF->ttl = UIP_TTL;
    goto ip_send_nolen;
  
    /* End of IPv4 input header processing code. */
  #else /* !UIP_CONF_IPV6 */
  
    /* This is IPv6 ICMPv6 processing code. */
    DEBUG_PRINTF("icmp6_input: length %d\n", uip_len);
  
    if(BUF->proto != UIP_PROTO_ICMP6) { /* We only allow ICMPv6 packets from
  					 here. */
      UIP_STAT(++uip_stat.ip.drop);
      UIP_STAT(++uip_stat.ip.protoerr);
      UIP_LOG("ip: neither tcp nor icmp6.");
      goto drop;
    }
  
    UIP_STAT(++uip_stat.icmp.recv);
  
    /* If we get a neighbor solicitation for our address we should send
       a neighbor advertisement message back. */
    if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) {
      if(uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr)) {
  
        if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) {
  	/* Save the sender's address in our neighbor list. */
  	uip_neighbor_add(&ICMPBUF->srcipaddr, &(ICMPBUF->options[2]));
        }
  
        /* We should now send a neighbor advertisement back to where the
  	 neighbor solicitation came from. */
        ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
        ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */
  
        ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;
  
        uip_ipaddr_copy(&ICMPBUF->destipaddr, &ICMPBUF->srcipaddr);
        uip_ipaddr_copy(&ICMPBUF->srcipaddr, &uip_hostaddr);
        ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
        ICMPBUF->options[1] = 1;  /* Options length, 1 = 8 bytes. */
        memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr));
        ICMPBUF->icmpchksum = 0;
        ICMPBUF->icmpchksum = ~uip_icmp6chksum();
  
        goto send;
  
      }
      goto drop;
    } else if(ICMPBUF->type == ICMP6_ECHO) {
      /* ICMP echo (i.e., ping) processing. This is simple, we only
         change the ICMP type from ECHO to ECHO_REPLY and update the
         ICMP checksum before we return the packet. */
  
      ICMPBUF->type = ICMP6_ECHO_REPLY;
  
      uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
      uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
      ICMPBUF->icmpchksum = 0;
      ICMPBUF->icmpchksum = ~uip_icmp6chksum();
  
      UIP_STAT(++uip_stat.icmp.sent);
      goto send;
    } else {
      DEBUG_PRINTF("Unknown icmp6 message type %d\n", ICMPBUF->type);
      UIP_STAT(++uip_stat.icmp.drop);
      UIP_STAT(++uip_stat.icmp.typeerr);
      UIP_LOG("icmp: unknown ICMP message.");
      goto drop;
    }
  
    /* End of IPv6 ICMP processing. */
  
  #endif /* !UIP_CONF_IPV6 */
  
  #if UIP_UDP
    /* UDP input processing. */
   udp_input:
    /* UDP processing is really just a hack. We don't do anything to the
       UDP/IP headers, but let the UDP application do all the hard
       work. If the application sets uip_slen, it has a packet to
       send. */
  #if UIP_UDP_CHECKSUMS
    uip_len = uip_len - UIP_IPUDPH_LEN;
    uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
    if(UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff) {
      UIP_STAT(++uip_stat.udp.drop);
      UIP_STAT(++uip_stat.udp.chkerr);
      UIP_LOG("udp: bad checksum.");
      goto drop;
    }
  #else /* UIP_UDP_CHECKSUMS */
    uip_len = uip_len - UIP_IPUDPH_LEN;
  #endif /* UIP_UDP_CHECKSUMS */
  
    /* Demultiplex this UDP packet between the UDP "connections". */
    for(uip_udp_conn = &uip_udp_conns[0];
        uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS];
        ++uip_udp_conn) {
      /* If the local UDP port is non-zero, the connection is considered
         to be used. If so, the local port number is checked against the
         destination port number in the received packet. If the two port
         numbers match, the remote port number is checked if the
         connection is bound to a remote port. Finally, if the
         connection is bound to a remote IP address, the source IP
         address of the packet is checked. */
      if(uip_udp_conn->lport != 0 &&
         UDPBUF->destport == uip_udp_conn->lport &&
         (uip_udp_conn->rport == 0 ||
          UDPBUF->srcport == uip_udp_conn->rport) &&
         (uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) ||
  	uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) ||
  	uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr))) {
        goto udp_found;
      }
    }
    UIP_LOG("udp: no matching connection found");
  #if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6
    /* Copy fields from packet header into payload of this ICMP packet. */
    memcpy(&(ICMPBUF->payload[0]), ICMPBUF, UIP_IPH_LEN + 8);
  
    /* Set the ICMP type and code. */
    ICMPBUF->type = ICMP_DEST_UNREACHABLE;
    ICMPBUF->icode = ICMP_PORT_UNREACHABLE;
  
    /* Calculate the ICMP checksum. */
    ICMPBUF->icmpchksum = 0;
    ICMPBUF->icmpchksum = ~uip_chksum((u16_t *)&(ICMPBUF->type), 36);
  
    /* Set the IP destination address to be the source address of the
       original packet. */
    uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
  
    /* Set our IP address as the source address. */
    uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
  
    /* The size of the ICMP destination unreachable packet is 36 + the
       size of the IP header (20) = 56. */
    uip_len = 36 + UIP_IPH_LEN;
    ICMPBUF->len[0] = 0;
    ICMPBUF->len[1] = (u8_t)uip_len;
    ICMPBUF->ttl = UIP_TTL;
    ICMPBUF->proto = UIP_PROTO_ICMP;
  
    goto ip_send_nolen;
  #else /* UIP_CONF_ICMP_DEST_UNREACH */
    goto drop;
  #endif /* UIP_CONF_ICMP_DEST_UNREACH */
  
   udp_found:
    uip_conn = NULL;
    uip_flags = UIP_NEWDATA;
    uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
    uip_slen = 0;
    UIP_UDP_APPCALL();
  
   udp_send:
    if(uip_slen == 0) {
      goto drop;
    }
    uip_len = uip_slen + UIP_IPUDPH_LEN;
  
  #if UIP_CONF_IPV6
    /* For IPv6, the IP length field does not include the IPv6 IP header
       length. */
    BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);
    BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);
  #else /* UIP_CONF_IPV6 */
    BUF->len[0] = (uip_len >> 8);
    BUF->len[1] = (uip_len & 0xff);
  #endif /* UIP_CONF_IPV6 */
  
    BUF->ttl = uip_udp_conn->ttl;
    BUF->proto = UIP_PROTO_UDP;
  
    UDPBUF->udplen = HTONS(uip_slen + UIP_UDPH_LEN);
    UDPBUF->udpchksum = 0;
  
    BUF->srcport  = uip_udp_conn->lport;
    BUF->destport = uip_udp_conn->rport;
  
    uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
    uip_ipaddr_copy(&BUF->destipaddr, &uip_udp_conn->ripaddr);
  
    uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];
  
  #if UIP_UDP_CHECKSUMS
    /* Calculate UDP checksum. */
    UDPBUF->udpchksum = ~(uip_udpchksum());
    if(UDPBUF->udpchksum == 0) {
      UDPBUF->udpchksum = 0xffff;
    }
  #endif /* UIP_UDP_CHECKSUMS */
  
    goto ip_send_nolen;
  #endif /* UIP_UDP */
  
    /* TCP input processing. */
   tcp_input:
    UIP_STAT(++uip_stat.tcp.recv);
  
    /* Start of TCP input header processing code. */
  
    if(uip_tcpchksum() != 0xffff) {   /* Compute and check the TCP
  				       checksum. */
      UIP_STAT(++uip_stat.tcp.drop);
      UIP_STAT(++uip_stat.tcp.chkerr);
      UIP_LOG("tcp: bad checksum.");
      goto drop;
    }
  
    /* Demultiplex this segment. */
    /* First check any active connections. */
    for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1];
        ++uip_connr) {
      if(uip_connr->tcpstateflags != UIP_CLOSED &&
         BUF->destport == uip_connr->lport &&
         BUF->srcport == uip_connr->rport &&
         uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr)) {
        goto found;
      }
    }
  
    /* If we didn't find and active connection that expected the packet,
       either this packet is an old duplicate, or this is a SYN packet
       destined for a connection in LISTEN. If the SYN flag isn't set,
       it is an old packet and we send a RST. */
    if((BUF->flags & TCP_CTL) != TCP_SYN) {
      goto reset;
    }
  
    tmp16 = BUF->destport;
    /* Next, check listening connections. */
    for(c = 0; c < UIP_LISTENPORTS; ++c) {
      if(tmp16 == uip_listenports[c]) {
        goto found_listen;
      }
    }
  
    /* No matching connection found, so we send a RST packet. */
    UIP_STAT(++uip_stat.tcp.synrst);
  
   reset:
    /* We do not send resets in response to resets. */
    if(BUF->flags & TCP_RST) {
      goto drop;
    }
  
    UIP_STAT(++uip_stat.tcp.rst);
  
    BUF->flags = TCP_RST | TCP_ACK;
    uip_len = UIP_IPTCPH_LEN;
    BUF->tcpoffset = 5 << 4;
  
    /* Flip the seqno and ackno fields in the TCP header. */
    c = BUF->seqno[3];
    BUF->seqno[3] = BUF->ackno[3];
    BUF->ackno[3] = c;
  
    c = BUF->seqno[2];
    BUF->seqno[2] = BUF->ackno[2];
    BUF->ackno[2] = c;
  
    c = BUF->seqno[1];
    BUF->seqno[1] = BUF->ackno[1];
    BUF->ackno[1] = c;
  
    c = BUF->seqno[0];
    BUF->seqno[0] = BUF->ackno[0];
    BUF->ackno[0] = c;
  
    /* We also have to increase the sequence number we are
       acknowledging. If the least significant byte overflowed, we need
       to propagate the carry to the other bytes as well. */
    if(++BUF->ackno[3] == 0) {
      if(++BUF->ackno[2] == 0) {
        if(++BUF->ackno[1] == 0) {
  	++BUF->ackno[0];
        }
      }
    }
  
    /* Swap port numbers. */
    tmp16 = BUF->srcport;
    BUF->srcport = BUF->destport;
    BUF->destport = tmp16;
  
    /* Swap IP addresses. */
    uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
    uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
  
    /* And send out the RST packet! */
    goto tcp_send_noconn;
  
    /* This label will be jumped to if we matched the incoming packet
       with a connection in LISTEN. In that case, we should create a new
       connection and send a SYNACK in return. */
   found_listen:
    /* First we check if there are any connections available. Unused
       connections are kept in the same table as used connections, but
       unused ones have the tcpstate set to CLOSED. Also, connections in
       TIME_WAIT are kept track of and we'll use the oldest one if no
       CLOSED connections are found. Thanks to Eddie C. Dost for a very
       nice algorithm for the TIME_WAIT search. */
    uip_connr = 0;
    for(c = 0; c < UIP_CONNS; ++c) {
      if(uip_conns[c].tcpstateflags == UIP_CLOSED) {
        uip_connr = &uip_conns[c];
        break;
      }
      if(uip_conns[c].tcpstateflags == UIP_TIME_WAIT) {
        if(uip_connr == 0 ||
  	 uip_conns[c].timer > uip_connr->timer) {
  	uip_connr = &uip_conns[c];
        }
      }
    }
  
    if(uip_connr == 0) {
      /* All connections are used already, we drop packet and hope that
         the remote end will retransmit the packet at a time when we
         have more spare connections. */
      UIP_STAT(++uip_stat.tcp.syndrop);
      UIP_LOG("tcp: found no unused connections.");
      goto drop;
    }
    uip_conn = uip_connr;
  
    /* Fill in the necessary fields for the new connection. */
    uip_connr->rto = uip_connr->timer = UIP_RTO;
    uip_connr->sa = 0;
    uip_connr->sv = 4;
    uip_connr->nrtx = 0;
    uip_connr->lport = BUF->destport;
    uip_connr->rport = BUF->srcport;
    uip_ipaddr_copy(&uip_connr->ripaddr, &BUF->srcipaddr);
    uip_connr->tcpstateflags = UIP_SYN_RCVD;
  
    uip_connr->snd_nxt[0] = iss[0];
    uip_connr->snd_nxt[1] = iss[1];
    uip_connr->snd_nxt[2] = iss[2];
    uip_connr->snd_nxt[3] = iss[3];
    uip_connr->len = 1;
  
    /* rcv_nxt should be the seqno from the incoming packet + 1. */
    uip_connr->rcv_nxt[3] = BUF->seqno[3];
    uip_connr->rcv_nxt[2] = BUF->seqno[2];
    uip_connr->rcv_nxt[1] = BUF->seqno[1];
    uip_connr->rcv_nxt[0] = BUF->seqno[0];
    uip_add_rcv_nxt(1);
  
    /* Parse the TCP MSS option, if present. */
    if((BUF->tcpoffset & 0xf0) > 0x50) {
      for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
        opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
        if(opt == TCP_OPT_END) {
  	/* End of options. */
  	break;
        } else if(opt == TCP_OPT_NOOP) {
  	++c;
  	/* NOP option. */
        } else if(opt == TCP_OPT_MSS &&
  		uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) {
  	/* An MSS option with the right option length. */
  	tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
  	  (u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
  	uip_connr->initialmss = uip_connr->mss =
  	  tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
  
  	/* And we are done processing options. */
  	break;
        } else {
  	/* All other options have a length field, so that we easily
  	   can skip past them. */
  	if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
  	  /* If the length field is zero, the options are malformed
  	     and we don't process them further. */
  	  break;
  	}
  	c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
        }
      }
    }
  
    /* Our response will be a SYNACK. */
  #if UIP_ACTIVE_OPEN
   tcp_send_synack:
    BUF->flags = TCP_ACK;
  
   tcp_send_syn:
    BUF->flags |= TCP_SYN;
  #else /* UIP_ACTIVE_OPEN */
   tcp_send_synack:
    BUF->flags = TCP_SYN | TCP_ACK;
  #endif /* UIP_ACTIVE_OPEN */
  
    /* We send out the TCP Maximum Segment Size option with our
       SYNACK. */
    BUF->optdata[0] = TCP_OPT_MSS;
    BUF->optdata[1] = TCP_OPT_MSS_LEN;
    BUF->optdata[2] = (UIP_TCP_MSS) / 256;
    BUF->optdata[3] = (UIP_TCP_MSS) & 255;
    uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN;
    BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4;
    goto tcp_send;
  
    /* This label will be jumped to if we found an active connection. */
   found:
    uip_conn = uip_connr;
    uip_flags = 0;
    /* We do a very naive form of TCP reset processing; we just accept
       any RST and kill our connection. We should in fact check if the
       sequence number of this reset is within our advertised window
       before we accept the reset. */
    if(BUF->flags & TCP_RST) {
      uip_connr->tcpstateflags = UIP_CLOSED;
      UIP_LOG("tcp: got reset, aborting connection.");
      uip_flags = UIP_ABORT;
      UIP_APPCALL();
      goto drop;
    }
    /* Calculate the length of the data, if the application has sent
       any data to us. */
    c = (BUF->tcpoffset >> 4) << 2;
    /* uip_len will contain the length of the actual TCP data. This is
       calculated by subtracing the length of the TCP header (in
       c) and the length of the IP header (20 bytes). */
    uip_len = uip_len - c - UIP_IPH_LEN;
  
    /* First, check if the sequence number of the incoming packet is
       what we're expecting next. If not, we send out an ACK with the
       correct numbers in. */
    if(!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) &&
         ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)))) {
      if((uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) &&
         (BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
  	BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
  	BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
  	BUF->seqno[3] != uip_connr->rcv_nxt[3])) {
        goto tcp_send_ack;
      }
    }
  
    /* Next, check if the incoming segment acknowledges any outstanding
       data. If so, we update the sequence number, reset the length of
       the outstanding data, calculate RTT estimations, and reset the
       retransmission timer. */
    if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) {
      uip_add32(uip_connr->snd_nxt, uip_connr->len);
  
      if(BUF->ackno[0] == uip_acc32[0] &&
         BUF->ackno[1] == uip_acc32[1] &&
         BUF->ackno[2] == uip_acc32[2] &&
         BUF->ackno[3] == uip_acc32[3]) {
        /* Update sequence number. */
        uip_connr->snd_nxt[0] = uip_acc32[0];
        uip_connr->snd_nxt[1] = uip_acc32[1];
        uip_connr->snd_nxt[2] = uip_acc32[2];
        uip_connr->snd_nxt[3] = uip_acc32[3];
  
        /* Do RTT estimation, unless we have done retransmissions. */
        if(uip_connr->nrtx == 0) {
  	signed char m;
  	m = uip_connr->rto - uip_connr->timer;
  	/* This is taken directly from VJs original code in his paper */
  	m = m - (uip_connr->sa >> 3);
  	uip_connr->sa += m;
  	if(m < 0) {
  	  m = -m;
  	}
  	m = m - (uip_connr->sv >> 2);
  	uip_connr->sv += m;
  	uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv;
  
        }
        /* Set the acknowledged flag. */
        uip_flags = UIP_ACKDATA;
        /* Reset the retransmission timer. */
        uip_connr->timer = uip_connr->rto;
  
        /* Reset length of outstanding data. */
        uip_connr->len = 0;
      }
  
    }
  
    /* Do different things depending on in what state the connection is. */
    switch(uip_connr->tcpstateflags & UIP_TS_MASK) {
      /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
  	implemented, since we force the application to close when the
  	peer sends a FIN (hence the application goes directly from
  	ESTABLISHED to LAST_ACK). */
    case UIP_SYN_RCVD:
      /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
         we are waiting for an ACK that acknowledges the data we sent
         out the last time. Therefore, we want to have the UIP_ACKDATA
         flag set. If so, we enter the ESTABLISHED state. */
      if(uip_flags & UIP_ACKDATA) {
        uip_connr->tcpstateflags = UIP_ESTABLISHED;
        uip_flags = UIP_CONNECTED;
        uip_connr->len = 0;
        if(uip_len > 0) {
          uip_flags |= UIP_NEWDATA;
          uip_add_rcv_nxt(uip_len);
        }
        uip_slen = 0;
        UIP_APPCALL();
        goto appsend;
      }
      goto drop;
  #if UIP_ACTIVE_OPEN
    case UIP_SYN_SENT:
      /* In SYN_SENT, we wait for a SYNACK that is sent in response to
         our SYN. The rcv_nxt is set to sequence number in the SYNACK
         plus one, and we send an ACK. We move into the ESTABLISHED
         state. */
      if((uip_flags & UIP_ACKDATA) &&
         (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) {
  
        /* Parse the TCP MSS option, if present. */
        if((BUF->tcpoffset & 0xf0) > 0x50) {
  	for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
  	  opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c];
  	  if(opt == TCP_OPT_END) {
  	    /* End of options. */
  	    break;
  	  } else if(opt == TCP_OPT_NOOP) {
  	    ++c;
  	    /* NOP option. */
  	  } else if(opt == TCP_OPT_MSS &&
  		    uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) {
  	    /* An MSS option with the right option length. */
  	    tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
  	      uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
  	    uip_connr->initialmss =
  	      uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
  
  	    /* And we are done processing options. */
  	    break;
  	  } else {
  	    /* All other options have a length field, so that we easily
  	       can skip past them. */
  	    if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
  	      /* If the length field is zero, the options are malformed
  		 and we don't process them further. */
  	      break;
  	    }
  	    c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
  	  }
  	}
        }
        uip_connr->tcpstateflags = UIP_ESTABLISHED;
        uip_connr->rcv_nxt[0] = BUF->seqno[0];
        uip_connr->rcv_nxt[1] = BUF->seqno[1];
        uip_connr->rcv_nxt[2] = BUF->seqno[2];
        uip_connr->rcv_nxt[3] = BUF->seqno[3];
        uip_add_rcv_nxt(1);
        uip_flags = UIP_CONNECTED | UIP_NEWDATA;
        uip_connr->len = 0;
        uip_len = 0;
        uip_slen = 0;
        UIP_APPCALL();
        goto appsend;
      }
      /* Inform the application that the connection failed */
      uip_flags = UIP_ABORT;
      UIP_APPCALL();
      /* The connection is closed after we send the RST */
      uip_conn->tcpstateflags = UIP_CLOSED;
      goto reset;
  #endif /* UIP_ACTIVE_OPEN */
  
    case UIP_ESTABLISHED:
      /* In the ESTABLISHED state, we call upon the application to feed
      data into the uip_buf. If the UIP_ACKDATA flag is set, the
      application should put new data into the buffer, otherwise we are
      retransmitting an old segment, and the application should put that
      data into the buffer.
  
      If the incoming packet is a FIN, we should close the connection on
      this side as well, and we send out a FIN and enter the LAST_ACK
      state. We require that there is no outstanding data; otherwise the
      sequence numbers will be screwed up. */
  
      if(BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
        if(uip_outstanding(uip_connr)) {
  	goto drop;
        }
        uip_add_rcv_nxt(1 + uip_len);
        uip_flags |= UIP_CLOSE;
        if(uip_len > 0) {
  	uip_flags |= UIP_NEWDATA;
        }
        UIP_APPCALL();
        uip_connr->len = 1;
        uip_connr->tcpstateflags = UIP_LAST_ACK;
        uip_connr->nrtx = 0;
      tcp_send_finack:
        BUF->flags = TCP_FIN | TCP_ACK;
        goto tcp_send_nodata;
      }
  
      /* Check the URG flag. If this is set, the segment carries urgent
         data that we must pass to the application. */
      if((BUF->flags & TCP_URG) != 0) {
  #if UIP_URGDATA > 0
        uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1];
        if(uip_urglen > uip_len) {
  	/* There is more urgent data in the next segment to come. */
  	uip_urglen = uip_len;
        }
        uip_add_rcv_nxt(uip_urglen);
        uip_len -= uip_urglen;
        uip_urgdata = uip_appdata;
        uip_appdata += uip_urglen;
      } else {
        uip_urglen = 0;
  #else /* UIP_URGDATA > 0 */
        uip_appdata = ((char *)uip_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]);
        uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1];
  #endif /* UIP_URGDATA > 0 */
      }
  
      /* If uip_len > 0 we have TCP data in the packet, and we flag this
         by setting the UIP_NEWDATA flag and update the sequence number
         we acknowledge. If the application has stopped the dataflow
         using uip_stop(), we must not accept any data packets from the
         remote host. */
      if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
        uip_flags |= UIP_NEWDATA;
        uip_add_rcv_nxt(uip_len);
      }
  
      /* Check if the available buffer space advertised by the other end
         is smaller than the initial MSS for this connection. If so, we
         set the current MSS to the window size to ensure that the
         application does not send more data than the other end can
         handle.
  
         If the remote host advertises a zero window, we set the MSS to
         the initial MSS so that the application will send an entire MSS
         of data. This data will not be acknowledged by the receiver,
         and the application will retransmit it. This is called the
         "persistent timer" and uses the retransmission mechanism.
      */
      tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1];
      if(tmp16 > uip_connr->initialmss ||
         tmp16 == 0) {
        tmp16 = uip_connr->initialmss;
      }
      uip_connr->mss = tmp16;
  
      /* If this packet constitutes an ACK for outstanding data (flagged
         by the UIP_ACKDATA flag, we should call the application since it
         might want to send more data. If the incoming packet had data
         from the peer (as flagged by the UIP_NEWDATA flag), the
         application must also be notified.
  
         When the application is called, the global variable uip_len
         contains the length of the incoming data. The application can
         access the incoming data through the global pointer
         uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN
         bytes into the uip_buf array.
  
         If the application wishes to send any data, this data should be
         put into the uip_appdata and the length of the data should be
         put into uip_len. If the application don't have any data to
         send, uip_len must be set to 0. */
      if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) {
        uip_slen = 0;
        UIP_APPCALL();
  
      appsend:
  
        if(uip_flags & UIP_ABORT) {
  	uip_slen = 0;
  	uip_connr->tcpstateflags = UIP_CLOSED;
  	BUF->flags = TCP_RST | TCP_ACK;
  	goto tcp_send_nodata;
        }
  
        if(uip_flags & UIP_CLOSE) {
  	uip_slen = 0;
  	uip_connr->len = 1;
  	uip_connr->tcpstateflags = UIP_FIN_WAIT_1;
  	uip_connr->nrtx = 0;
  	BUF->flags = TCP_FIN | TCP_ACK;
  	goto tcp_send_nodata;
        }
  
        /* If uip_slen > 0, the application has data to be sent. */
        if(uip_slen > 0) {
  
  	/* If the connection has acknowledged data, the contents of
  	   the ->len variable should be discarded. */
  	if((uip_flags & UIP_ACKDATA) != 0) {
  	  uip_connr->len = 0;
  	}
  
  	/* If the ->len variable is non-zero the connection has
  	   already data in transit and cannot send anymore right
  	   now. */
  	if(uip_connr->len == 0) {
  
  	  /* The application cannot send more than what is allowed by
  	     the mss (the minumum of the MSS and the available
  	     window). */
  	  if(uip_slen > uip_connr->mss) {
  	    uip_slen = uip_connr->mss;
  	  }
  
  	  /* Remember how much data we send out now so that we know
  	     when everything has been acknowledged. */
  	  uip_connr->len = uip_slen;
  	} else {
  
  	  /* If the application already had unacknowledged data, we
  	     make sure that the application does not send (i.e.,
  	     retransmit) out more than it previously sent out. */
  	  uip_slen = uip_connr->len;
  	}
        }
        uip_connr->nrtx = 0;
      apprexmit:
        uip_appdata = uip_sappdata;
  
        /* If the application has data to be sent, or if the incoming
           packet had new data in it, we must send out a packet. */
        if(uip_slen > 0 && uip_connr->len > 0) {
  	/* Add the length of the IP and TCP headers. */
  	uip_len = uip_connr->len + UIP_TCPIP_HLEN;
  	/* We always set the ACK flag in response packets. */
  	BUF->flags = TCP_ACK | TCP_PSH;
  	/* Send the packet. */
  	goto tcp_send_noopts;
        }
        /* If there is no data to send, just send out a pure ACK if
  	 there is newdata. */
        if(uip_flags & UIP_NEWDATA) {
  	uip_len = UIP_TCPIP_HLEN;
  	BUF->flags = TCP_ACK;
  	goto tcp_send_noopts;
        }
      }
      goto drop;
    case UIP_LAST_ACK:
      /* We can close this connection if the peer has acknowledged our
         FIN. This is indicated by the UIP_ACKDATA flag. */
      if(uip_flags & UIP_ACKDATA) {
        uip_connr->tcpstateflags = UIP_CLOSED;
        uip_flags = UIP_CLOSE;
        UIP_APPCALL();
      }
      break;
  
    case UIP_FIN_WAIT_1:
      /* The application has closed the connection, but the remote host
         hasn't closed its end yet. Thus we do nothing but wait for a
         FIN from the other side. */
      if(uip_len > 0) {
        uip_add_rcv_nxt(uip_len);
      }
      if(BUF->flags & TCP_FIN) {
        if(uip_flags & UIP_ACKDATA) {
  	uip_connr->tcpstateflags = UIP_TIME_WAIT;
  	uip_connr->timer = 0;
  	uip_connr->len = 0;
        } else {
  	uip_connr->tcpstateflags = UIP_CLOSING;
        }
        uip_add_rcv_nxt(1);
        uip_flags = UIP_CLOSE;
        UIP_APPCALL();
        goto tcp_send_ack;
      } else if(uip_flags & UIP_ACKDATA) {
        uip_connr->tcpstateflags = UIP_FIN_WAIT_2;
        uip_connr->len = 0;
        goto drop;
      }
      if(uip_len > 0) {
        goto tcp_send_ack;
      }
      goto drop;
  
    case UIP_FIN_WAIT_2:
      if(uip_len > 0) {
        uip_add_rcv_nxt(uip_len);
      }
      if(BUF->flags & TCP_FIN) {
        uip_connr->tcpstateflags = UIP_TIME_WAIT;
        uip_connr->timer = 0;
        uip_add_rcv_nxt(1);
        uip_flags = UIP_CLOSE;
        UIP_APPCALL();
        goto tcp_send_ack;
      }
      if(uip_len > 0) {
        goto tcp_send_ack;
      }
      goto drop;
  
    case UIP_TIME_WAIT:
      goto tcp_send_ack;
  
    case UIP_CLOSING:
      if(uip_flags & UIP_ACKDATA) {
        uip_connr->tcpstateflags = UIP_TIME_WAIT;
        uip_connr->timer = 0;
      }
    }
    goto drop;
  
    /* We jump here when we are ready to send the packet, and just want
       to set the appropriate TCP sequence numbers in the TCP header. */
   tcp_send_ack:
    BUF->flags = TCP_ACK;
  
   tcp_send_nodata:
    uip_len = UIP_IPTCPH_LEN;
  
   tcp_send_noopts:
    BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4;
  
    /* We're done with the input processing. We are now ready to send a
       reply. Our job is to fill in all the fields of the TCP and IP
       headers before calculating the checksum and finally send the
       packet. */
   tcp_send:
    BUF->ackno[0] = uip_connr->rcv_nxt[0];
    BUF->ackno[1] = uip_connr->rcv_nxt[1];
    BUF->ackno[2] = uip_connr->rcv_nxt[2];
    BUF->ackno[3] = uip_connr->rcv_nxt[3];
  
    BUF->seqno[0] = uip_connr->snd_nxt[0];
    BUF->seqno[1] = uip_connr->snd_nxt[1];
    BUF->seqno[2] = uip_connr->snd_nxt[2];
    BUF->seqno[3] = uip_connr->snd_nxt[3];
  
    BUF->proto = UIP_PROTO_TCP;
  
    BUF->srcport  = uip_connr->lport;
    BUF->destport = uip_connr->rport;
  
    uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
    uip_ipaddr_copy(&BUF->destipaddr, &uip_connr->ripaddr);
  
    if(uip_connr->tcpstateflags & UIP_STOPPED) {
      /* If the connection has issued uip_stop(), we advertise a zero
         window so that the remote host will stop sending data. */
      BUF->wnd[0] = BUF->wnd[1] = 0;
    } else {
      BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8);
      BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff);
    }
  
   tcp_send_noconn:
    BUF->ttl = UIP_TTL;
  #if UIP_CONF_IPV6
    /* For IPv6, the IP length field does not include the IPv6 IP header
       length. */
    BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);
    BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);
  #else /* UIP_CONF_IPV6 */
    BUF->len[0] = (uip_len >> 8);
    BUF->len[1] = (uip_len & 0xff);
  #endif /* UIP_CONF_IPV6 */
  
    BUF->urgp[0] = BUF->urgp[1] = 0;
  
    /* Calculate TCP checksum. */
    BUF->tcpchksum = 0;
    BUF->tcpchksum = ~(uip_tcpchksum());
  
   ip_send_nolen:
  #if UIP_CONF_IPV6
    BUF->vtc = 0x60;
    BUF->tcflow = 0x00;
    BUF->flow = 0x00;
  #else /* UIP_CONF_IPV6 */
    BUF->vhl = 0x45;
    BUF->tos = 0;
    BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
    ++ipid;
    BUF->ipid[0] = ipid >> 8;
    BUF->ipid[1] = ipid & 0xff;
    /* Calculate IP checksum. */
    BUF->ipchksum = 0;
    BUF->ipchksum = ~(uip_ipchksum());
    DEBUG_PRINTF("uip ip_send_nolen: checksum 0x%04x\n", uip_ipchksum());
  #endif /* UIP_CONF_IPV6 */
    UIP_STAT(++uip_stat.tcp.sent);
  #if UIP_CONF_IPV6
   send:
  #endif /* UIP_CONF_IPV6 */
    DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len,
  	       (BUF->len[0] << 8) | BUF->len[1]);
  
    UIP_STAT(++uip_stat.ip.sent);
    /* Return and let the caller do the actual transmission. */
    uip_flags = 0;
    return;
  
   drop:
    uip_len = 0;
    uip_flags = 0;
    return;
  }
  /*---------------------------------------------------------------------------*/
  u16_t
  htons(u16_t val)
  {
    return HTONS(val);
  }
  
  u32_t
  htonl(u32_t val)
  {
    return HTONL(val);
  }
  /*---------------------------------------------------------------------------*/
  void
  uip_send(const void *data, int len)
  {
    int copylen;
  #define MIN(a,b) ((a) < (b)? (a): (b))
    copylen = MIN(len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN -
  		(int)((char *)uip_sappdata - (char *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]));
    if(copylen > 0) {
      uip_slen = copylen;
      if(data != uip_sappdata) {
        memcpy(uip_sappdata, (data), uip_slen);
      }
    }
  }
  /*---------------------------------------------------------------------------*/
  /** @} */
  #endif /* UIP_CONF_IPV6 */