/* * Copyright (C) 2015 Kaspar Schleiser * Copyright (C) 2015 Eistec AB * 2013 INRIA * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup tests * @{ * * @file * @brief xtimer_drift test application * * @author Kaspar Schleiser * @author Oliver Hahm * @author Christian Mehlis * @author Joakim NohlgÄrd * * @} */ #include #include #include "xtimer.h" #include "thread.h" #include "msg.h" /* We generate some context switching and IPC traffic by using multiple threads * and generate some xtimer load by scheduling several messages to be called at * different times. TEST_HZ is the frequency of messages being sent from the * main thread to the worker, all other message frequencies are derived from * TEST_HZ. * TEST_MSG_RX_USLEEP is a tiny sleep inside the message reception thread to * cause extra context switches. */ #define TEST_HZ (64LU) #define TEST_INTERVAL (1000000LU / TEST_HZ) #define TEST_MSG_RX_USLEEP (200LU) char slacker_stack1[THREAD_STACKSIZE_DEFAULT]; char slacker_stack2[THREAD_STACKSIZE_DEFAULT]; char worker_stack[THREAD_STACKSIZE_MAIN]; struct timer_msg { xtimer_t timer; uint32_t interval; msg_t msg; }; struct timer_msg msg_a = { .interval = (TEST_INTERVAL / 2) }; struct timer_msg msg_b = { .interval = (TEST_INTERVAL / 3) }; struct timer_msg msg_c = { .interval = (TEST_INTERVAL * 5) }; struct timer_msg msg_d = { .interval = (TEST_INTERVAL * 2) }; /* This thread is only here to give the kernel some extra load */ void *slacker_thread(void *arg) { (void) arg; timex_t now; printf("Starting thread %" PRIkernel_pid "\n", thread_getpid()); /* we need a queue if the second message arrives while the first is still processed */ /* without a queue, the message would get lost */ msg_t msgq[4]; msg_init_queue(msgq, 4); while (1) { msg_t m; msg_receive(&m); struct timer_msg *tmsg = m.content.ptr; xtimer_now_timex(&now); xtimer_usleep(TEST_MSG_RX_USLEEP); tmsg->msg.type = 12345; tmsg->msg.content.ptr = tmsg; xtimer_set_msg(&tmsg->timer, tmsg->interval, &tmsg->msg, thread_getpid()); } } /* This thread will print the drift to stdout once per second */ void *worker_thread(void *arg) { (void) arg; uint32_t loop_counter = 0; uint32_t start = 0; uint32_t last = 0; printf("Starting thread %" PRIkernel_pid "\n", thread_getpid()); while (1) { msg_t m; msg_receive(&m); xtimer_ticks32_t ticks = xtimer_now(); uint32_t now = xtimer_usec_from_ticks(ticks); if (start == 0) { start = now; last = start; ++loop_counter; continue; } uint32_t us, sec; us = now % SEC_IN_USEC; sec = now / SEC_IN_USEC; if ((loop_counter % TEST_HZ) == 0) { uint32_t expected = start + loop_counter * TEST_INTERVAL; int32_t drift = now - expected; expected = last + TEST_HZ * TEST_INTERVAL; int32_t jitter = now - expected; printf("now=%" PRIu32 ".%06" PRIu32 " (0x%08" PRIx32 " ticks), ", sec, us, ticks.ticks32); printf("drift=%" PRId32 " us, jitter=%" PRId32 " us\n", drift, jitter); last = now; } ++loop_counter; } } int main(void) { msg_t m; puts("xtimer_drift test application"); puts("Make note of the PC clock when starting this test, let run for a while, " "compare the printed time against the expected time from the PC clock."); puts("The difference is the RIOT timer drift, this is likely caused by either: " "an inaccurate hardware timer, or bugs in the software (xtimer or periph/timer)."); printf("This test will run a periodic timer every %lu microseconds (%lu Hz), ", (unsigned long)TEST_INTERVAL, (unsigned long)TEST_HZ); puts("The current time will be printed once per second, along with the " "difference between the actual and expected xtimer_now value."); puts("The first output variable, 'drift', represents the total offset since " "start between xtimer_now and the expected time."); puts("The second output variable, 'jitter', represents the difference in drift from the last printout."); puts("Two other threads are also running only to cause extra interrupts and context switches."); puts(" <====== PC clock if running in pyterm."); puts(""); puts(" ======================="); puts(" ===== Test begins ====="); puts(" ======================="); kernel_pid_t pid1 = thread_create( slacker_stack1, sizeof(slacker_stack1), THREAD_PRIORITY_MAIN - 1, THREAD_CREATE_STACKTEST, slacker_thread, NULL, "slacker1"); puts("sending 1st msg"); m.content.ptr = &msg_a; msg_try_send(&m, pid1); puts("sending 2nd msg"); m.content.ptr = &msg_b; msg_try_send(&m, pid1); kernel_pid_t pid2 = thread_create( slacker_stack2, sizeof(slacker_stack2), THREAD_PRIORITY_MAIN - 1, THREAD_CREATE_STACKTEST, slacker_thread, NULL, "slacker2"); puts("sending 3rd msg"); m.content.ptr = &msg_c; msg_try_send(&m, pid2); puts("sending 4th msg"); m.content.ptr = &msg_d; msg_try_send(&m, pid2); kernel_pid_t pid3 = thread_create( worker_stack, sizeof(worker_stack), THREAD_PRIORITY_MAIN - 1, THREAD_CREATE_STACKTEST, worker_thread, NULL, "worker"); xtimer_ticks32_t last_wakeup = xtimer_now(); while (1) { xtimer_periodic_wakeup(&last_wakeup, TEST_INTERVAL); msg_try_send(&m, pid3); } }