/* * Copyright (C) 2015 Kaspar Schleiser * Copyright (C) 2016 Eistec AB * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup xtimer * @{ * @file * @brief xtimer convenience functionality * @author Kaspar Schleiser * @author Joakim NohlgÄrd * @} */ #include #include #include #include "xtimer.h" #include "mutex.h" #include "thread.h" #include "irq.h" #include "div.h" #include "timex.h" #define ENABLE_DEBUG 0 #include "debug.h" static void _callback_unlock_mutex(void* arg) { mutex_t *mutex = (mutex_t *) arg; mutex_unlock(mutex); } void _xtimer_tsleep(uint32_t offset, uint32_t long_offset) { if (irq_is_in()) { assert(!long_offset); _xtimer_spin(offset); return; } xtimer_t timer; mutex_t mutex = MUTEX_INIT; timer.callback = _callback_unlock_mutex; timer.arg = (void*) &mutex; timer.target = timer.long_target = 0; mutex_lock(&mutex); _xtimer_set64(&timer, offset, long_offset); mutex_lock(&mutex); } void _xtimer_periodic_wakeup(uint32_t *last_wakeup, uint32_t period) { xtimer_t timer; mutex_t mutex = MUTEX_INIT; timer.callback = _callback_unlock_mutex; timer.arg = (void*) &mutex; uint32_t target = (*last_wakeup) + period; uint32_t now = _xtimer_now(); /* make sure we're not setting a value in the past */ if (now < (*last_wakeup)) { /* base timer overflowed between last_wakeup and now */ if (!((now < target) && (target < (*last_wakeup)))) { /* target time has already passed */ goto out; } } else { /* base timer did not overflow */ if ((((*last_wakeup) <= target) && (target <= now))) { /* target time has already passed */ goto out; } } /* * For large offsets, set an absolute target time. * As that might cause an underflow, for small offsets, set a relative * target time. * For very small offsets, spin. */ /* * Note: last_wakeup _must never_ specify a time in the future after * _xtimer_periodic_sleep returns. * If this happens, last_wakeup may specify a time in the future when the * next call to _xtimer_periodic_sleep is made, which in turn will trigger * the overflow logic above and make the next timer fire too early, causing * last_wakeup to point even further into the future, leading to a chain * reaction. * * tl;dr Don't return too early! */ uint32_t offset = target - now; DEBUG("xps, now: %9" PRIu32 ", tgt: %9" PRIu32 ", off: %9" PRIu32 "\n", now, target, offset); if (offset < XTIMER_PERIODIC_SPIN) { _xtimer_spin(offset); } else { if (offset < XTIMER_PERIODIC_RELATIVE) { /* NB: This will overshoot the target by the amount of time it took * to get here from the beginning of xtimer_periodic_wakeup() * * Since interrupts are normally enabled inside this function, this time may * be undeterministic. */ target = _xtimer_now() + offset; } mutex_lock(&mutex); DEBUG("xps, abs: %" PRIu32 "\n", target); _xtimer_set_absolute(&timer, target); mutex_lock(&mutex); } out: *last_wakeup = target; } static void _callback_msg(void* arg) { msg_t *msg = (msg_t*)arg; msg_send_int(msg, msg->sender_pid); } static inline void _setup_msg(xtimer_t *timer, msg_t *msg, kernel_pid_t target_pid) { timer->callback = _callback_msg; timer->arg = (void*) msg; /* use sender_pid field to get target_pid into callback function */ msg->sender_pid = target_pid; } void _xtimer_set_msg(xtimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid) { _setup_msg(timer, msg, target_pid); _xtimer_set(timer, offset); } void _xtimer_set_msg64(xtimer_t *timer, uint64_t offset, msg_t *msg, kernel_pid_t target_pid) { _setup_msg(timer, msg, target_pid); _xtimer_set64(timer, offset, offset >> 32); } static void _callback_wakeup(void* arg) { thread_wakeup((kernel_pid_t)((intptr_t)arg)); } void _xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pid_t pid) { timer->callback = _callback_wakeup; timer->arg = (void*) ((intptr_t)pid); _xtimer_set(timer, offset); } void _xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_pid_t pid) { timer->callback = _callback_wakeup; timer->arg = (void*) ((intptr_t)pid); _xtimer_set64(timer, offset, offset >> 32); } void xtimer_now_timex(timex_t *out) { uint64_t now = xtimer_usec_from_ticks64(xtimer_now64()); out->seconds = div_u64_by_1000000(now); out->microseconds = now - (out->seconds * SEC_IN_USEC); } /* Prepares the message to trigger the timeout. * Additionally, the xtimer_t struct gets initialized. */ static void _setup_timer_msg(msg_t *m, xtimer_t *t) { m->type = MSG_XTIMER; m->content.ptr = m; t->target = t->long_target = 0; } /* Waits for incoming message or timeout. */ static int _msg_wait(msg_t *m, msg_t *tmsg, xtimer_t *t) { msg_receive(m); if (m->type == MSG_XTIMER && m->content.ptr == tmsg) { /* we hit the timeout */ return -1; } else { xtimer_remove(t); return 1; } } int _xtimer_msg_receive_timeout64(msg_t *m, uint64_t timeout_ticks) { msg_t tmsg; xtimer_t t; _setup_timer_msg(&tmsg, &t); _xtimer_set_msg64(&t, timeout_ticks, &tmsg, sched_active_pid); return _msg_wait(m, &tmsg, &t); } int _xtimer_msg_receive_timeout(msg_t *msg, uint32_t timeout_ticks) { msg_t tmsg; xtimer_t t; _setup_timer_msg(&tmsg, &t); _xtimer_set_msg(&t, timeout_ticks, &tmsg, sched_active_pid); return _msg_wait(msg, &tmsg, &t); }