/* * Copyright (C) 2014-2016 Freie Universität Berlin * 2015 Engineering-Spirit * 2016 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32_common * @{ * * @file * @brief Low-level PWM driver implementation * * @author Hauke Petersen * @author Fabian Nack * @author Nick v. IJzendoorn * @author Aurelien Gonce * * @} */ #include "cpu.h" #include "assert.h" #include "periph/pwm.h" #include "periph/gpio.h" #ifdef PWM_NUMOF #define CCMR_LEFT (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2 | \ TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2M_2) #define CCMR_RIGHT (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1 | \ TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC2M_0 | \ TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2M_2); static inline TIM_TypeDef *dev(pwm_t pwm) { return pwm_config[pwm].dev; } uint32_t pwm_init(pwm_t pwm, pwm_mode_t mode, uint32_t freq, uint16_t res) { uint32_t bus_clk = periph_apb_clk(pwm_config[pwm].bus); /* verify parameters */ assert((pwm < PWM_NUMOF) && ((freq * res) < bus_clk)); /* power on the used timer */ pwm_poweron(pwm); /* reset configuration and CC channels */ dev(pwm)->CR1 = 0; dev(pwm)->CR2 = 0; for (int i = 0; i < TIMER_CHAN; i++) { dev(pwm)->CCR[i] = 0; } /* configure the used pins */ for (unsigned i = 0; i < pwm_config[pwm].chan; i++) { gpio_init(pwm_config[pwm].pins[i], GPIO_OUT); gpio_init_af(pwm_config[pwm].pins[i], pwm_config[pwm].af); } /* configure the PWM frequency and resolution by setting the auto-reload * and prescaler registers */ dev(pwm)->PSC = (bus_clk / (res * freq)) - 1; dev(pwm)->ARR = res - 1; /* set PWM mode */ switch (mode) { case PWM_LEFT: dev(pwm)->CCMR1 = CCMR_LEFT; dev(pwm)->CCMR2 = CCMR_LEFT; break; case PWM_RIGHT: dev(pwm)->CCMR1 = CCMR_RIGHT; dev(pwm)->CCMR2 = CCMR_RIGHT; break; case PWM_CENTER: dev(pwm)->CCMR1 = 0; dev(pwm)->CCMR2 = 0; dev(pwm)->CR1 |= (TIM_CR1_CMS_0 | TIM_CR1_CMS_1); break; } /* enable PWM outputs and start PWM generation */ #ifdef TIM_BDTR_MOE dev(pwm)->BDTR = TIM_BDTR_MOE; #endif dev(pwm)->CCER = (TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E); dev(pwm)->CR1 |= TIM_CR1_CEN; /* return the actual used PWM frequency */ return (bus_clk / (res * (dev(pwm)->PSC + 1))); } uint8_t pwm_channels(pwm_t pwm) { assert(pwm < PWM_NUMOF); return pwm_config[pwm].chan; } void pwm_set(pwm_t pwm, uint8_t channel, uint16_t value) { assert((pwm < PWM_NUMOF) && (channel < pwm_config[pwm].chan)); /* norm value to maximum possible value */ if (value > dev(pwm)->ARR) { value = (uint16_t)dev(pwm)->ARR; } /* set new value */ dev(pwm)->CCR[channel] = value; } void pwm_start(pwm_t pwm) { assert(pwm < PWM_NUMOF); dev(pwm)->CR1 |= TIM_CR1_CEN; } void pwm_stop(pwm_t pwm) { assert(pwm < PWM_NUMOF); dev(pwm)->CR1 &= ~TIM_CR1_CEN; } void pwm_poweron(pwm_t pwm) { assert(pwm < PWM_NUMOF); periph_clk_en(pwm_config[pwm].bus, pwm_config[pwm].rcc_mask); } void pwm_poweroff(pwm_t pwm) { assert(pwm < PWM_NUMOF); periph_clk_dis(pwm_config[pwm].bus, pwm_config[pwm].rcc_mask); } #endif /* PWM_NUMOF */