/* * Copyright (C) 2016 Kees Bakker, SODAQ * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup boards_sodaq-autonomo * @{ * * @file * @brief Configuration of CPU peripherals for the SODAQ Autonomo board * * @author Kees Bakker */ #ifndef PERIPH_CONF_H_ #define PERIPH_CONF_H_ #include #include "cpu.h" #include "periph_cpu.h" #ifdef __cplusplus extern "C" { #endif /** * @brief External oscillator and clock configuration * * For selection of the used CORECLOCK, we have implemented two choices: * * - usage of the PLL fed by the internal 8MHz oscillator divided by 8 * - usage of the internal 8MHz oscillator directly, divided by N if needed * * * The PLL option allows for the usage of a wider frequency range and a more * stable clock with less jitter. This is why we use this option as default. * * The target frequency is computed from the PLL multiplier and the PLL divisor. * Use the following formula to compute your values: * * CORECLOCK = ((PLL_MUL + 1) * 1MHz) / PLL_DIV * * NOTE: The PLL circuit does not run with less than 32MHz while the maximum PLL * frequency is 96MHz. So PLL_MULL must be between 31 and 95! * * * The internal Oscillator used directly can lead to a slightly better power * efficiency to the cost of a less stable clock. Use this option when you know * what you are doing! The actual core frequency is adjusted as follows: * * CORECLOCK = 8MHz / DIV * * NOTE: A core clock frequency below 1MHz is not recommended * * @{ */ #define CLOCK_USE_PLL (1) #if CLOCK_USE_PLL /* edit these values to adjust the PLL output frequency */ #define CLOCK_PLL_MUL (47U) /* must be >= 31 & <= 95 */ #define CLOCK_PLL_DIV (1U) /* adjust to your needs */ /* generate the actual used core clock frequency */ #define CLOCK_CORECLOCK (((CLOCK_PLL_MUL + 1) * 1000000U) / CLOCK_PLL_DIV) #else /* edit this value to your needs */ #define CLOCK_DIV (1U) /* generate the actual core clock frequency */ #define CLOCK_CORECLOCK (8000000 / CLOCK_DIV) #endif /** @} */ /** * @name Timer peripheral configuration * @{ */ #define TIMER_NUMOF (2U) #define TIMER_0_EN 1 #define TIMER_1_EN 1 /* Timer 0 configuration */ #define TIMER_0_DEV TC3->COUNT16 #define TIMER_0_CHANNELS 2 #define TIMER_0_MAX_VALUE (0xffff) #define TIMER_0_ISR isr_tc3 /* Timer 1 configuration */ #define TIMER_1_DEV TC4->COUNT32 #define TIMER_1_CHANNELS 2 #define TIMER_1_MAX_VALUE (0xffffffff) #define TIMER_1_ISR isr_tc4 /** @} */ /** * @name UART configuration * @{ * See Table 6.1 of the SAM D21 Datasheet */ static const uart_conf_t uart_config[] = { { .dev = &SERCOM0->USART, .rx_pin = GPIO_PIN(PA,9), .tx_pin = GPIO_PIN(PA,10), .mux = GPIO_MUX_C, .rx_pad = UART_PAD_RX_1, .tx_pad = UART_PAD_TX_2, }, { .dev = &SERCOM5->USART, .rx_pin = GPIO_PIN(PB,31), .tx_pin = GPIO_PIN(PB,30), .mux = GPIO_MUX_D, .rx_pad = UART_PAD_RX_1, .tx_pad = UART_PAD_TX_0_RTS_2_CTS_3, }, { .dev = &SERCOM4->USART, .rx_pin = GPIO_PIN(PB,13), .tx_pin = GPIO_PIN(PA,14), .mux = GPIO_MUX_C, .rx_pad = UART_PAD_RX_1, .tx_pad = UART_PAD_TX_2, }, { .dev = &SERCOM1->USART, .rx_pin = GPIO_PIN(PA,17), .tx_pin = GPIO_PIN(PA,18), .mux = GPIO_MUX_C, .rx_pad = UART_PAD_RX_1, .tx_pad = UART_PAD_TX_2, }, }; /* interrupt function name mapping */ #define UART_0_ISR isr_sercom0 #define UART_1_ISR isr_sercom5 #define UART_2_ISR isr_sercom4 #define UART_3_ISR isr_sercom1 #define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0])) /** @} */ /** * @name PWM configuration * @{ */ #define PWM_0_EN 1 #define PWM_1_EN 1 #define PWM_MAX_CHANNELS 3 /* for compatibility with test application */ #define PWM_0_CHANNELS PWM_MAX_CHANNELS #define PWM_1_CHANNELS PWM_MAX_CHANNELS /* PWM device configuration */ static const pwm_conf_t pwm_config[] = { #if PWM_0_EN {TCC1, { /* GPIO pin, MUX value, TCC channel */ { GPIO_PIN(PA, 6), GPIO_MUX_E, 0 }, { GPIO_PIN(PA, 7), GPIO_MUX_E, 1 }, { GPIO_UNDEF, (gpio_mux_t)0, 2 } }}, #endif #if PWM_1_EN {TCC0, { /* GPIO pin, MUX value, TCC channel */ { GPIO_PIN(PA, 16), GPIO_MUX_F, 0 }, { GPIO_PIN(PA, 18), GPIO_MUX_F, 2 }, { GPIO_PIN(PA, 19), GPIO_MUX_F, 3 } }} #endif }; /* number of devices that are actually defined */ #define PWM_NUMOF (2U) /** @} */ /** * @name SPI configuration * @{ */ #define SPI_NUMOF (1) #define SPI_0_EN 1 #define SPI_1_EN 0 /* SPI0 */ #define SPI_0_DEV SERCOM3->SPI #define SPI_IRQ_0 SERCOM3_IRQn #define SPI_0_GCLK_ID SERCOM3_GCLK_ID_CORE /* SPI 0 pin configuration */ #define SPI_0_SCLK GPIO_PIN(PA, 21) #define SPI_0_SCLK_MUX GPIO_MUX_D #define SPI_0_MISO GPIO_PIN(PA, 22) #define SPI_0_MISO_MUX GPIO_MUX_C #define SPI_0_MISO_PAD SPI_PAD_MISO_0 #define SPI_0_MOSI GPIO_PIN(PA, 20) #define SPI_0_MOSI_MUX GPIO_MUX_D #define SPI_0_MOSI_PAD SPI_PAD_MOSI_2_SCK_3 // How/where do we define SS? #define SPI_0_SS GPIO_PIN(PA, 23) /** @} */ /** * @name I2C configuration * @{ */ #define I2C_NUMOF (1U) #define I2C_0_EN 1 #define I2C_1_EN 0 #define I2C_2_EN 0 #define I2C_3_EN 0 #define I2C_IRQ_PRIO 1 #define I2C_0_DEV SERCOM2->I2CM #define I2C_0_IRQ SERCOM2_IRQn #define I2C_0_ISR isr_sercom2 /* I2C 0 GCLK */ #define I2C_0_GCLK_ID SERCOM2_GCLK_ID_CORE #define I2C_0_GCLK_ID_SLOW SERCOM2_GCLK_ID_SLOW /* I2C 0 pin configuration */ #define I2C_0_SDA GPIO_PIN(PA, 12) #define I2C_0_SCL GPIO_PIN(PA, 13) #define I2C_0_MUX GPIO_MUX_C /** * @name RTC configuration * @{ */ #define RTC_NUMOF (1U) #define RTC_DEV RTC->MODE2 /** @} */ /** * @name RTT configuration * @{ */ #define RTT_NUMOF (1U) #define RTT_DEV RTC->MODE0 #define RTT_IRQ RTC_IRQn #define RTT_IRQ_PRIO 10 #define RTT_ISR isr_rtc #define RTT_MAX_VALUE (0xffffffff) #define RTT_FREQUENCY (32768U) /* in Hz. For changes see `rtt.c` */ #define RTT_RUNSTDBY (1) /* Keep RTT running in sleep states */ /** @} */ #ifdef __cplusplus } #endif #endif /* PERIPH_CONF_H_ */ /** @} */