/* * Copyright (C) 2015 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_at86rf2xx * @{ * * @file * @brief Getter and setter functions for the AT86RF2xx drivers * * @author Thomas Eichinger * @author Hauke Petersen * @author Baptiste Clenet * @author Daniel Krebs * @author Kévin Roussel * @author Joakim Nohlgård * * @} */ #include "at86rf2xx.h" #include "at86rf2xx_internal.h" #include "at86rf2xx_registers.h" #include "periph/spi.h" #define ENABLE_DEBUG (0) #include "debug.h" #ifdef MODULE_AT86RF212B /* See: Table 9-15. Recommended Mapping of TX Power, Frequency Band, and * PHY_TX_PWR (register 0x05), AT86RF212B data sheet. */ static const uint8_t dbm_to_tx_pow_868[] = {0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x31, 0x30, 0x2f, 0x94, 0x93, 0x91, 0x90, 0x29, 0x49, 0x48, 0x47, 0xad, 0xcd, 0xcc, 0xcb, 0xea, 0xe9, 0xe8, 0xe7, 0xe6, 0xe4, 0x80, 0xa0}; static const uint8_t dbm_to_tx_pow_915[] = {0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x09, 0x91, 0x08, 0x07, 0x05, 0x27, 0x04, 0x03, 0x02, 0x01, 0x00, 0x86, 0x40, 0x84, 0x83, 0x82, 0x80, 0xc1, 0xc0}; static int16_t _tx_pow_to_dbm_212b(uint8_t channel, uint8_t page, uint8_t reg) { const uint8_t *dbm_to_tx_pow; size_t nelem; if (page == 0 || page == 2) { /* Channel 0 is 868.3 MHz */ if (channel == 0) { dbm_to_tx_pow = &dbm_to_tx_pow_868[0]; nelem = sizeof(dbm_to_tx_pow_868) / sizeof(dbm_to_tx_pow_868[0]); } else { /* Channels 1+ are 915 MHz */ dbm_to_tx_pow = &dbm_to_tx_pow_915[0]; nelem = sizeof(dbm_to_tx_pow_915) / sizeof(dbm_to_tx_pow_915[0]); } } else { return 0; } for(size_t i = 0; i < nelem; i++){ if (dbm_to_tx_pow[i] == reg) { return i - 25; } } return 0; } #elif MODULE_AT86RF233 static const int16_t tx_pow_to_dbm[] = {4, 4, 3, 3, 2, 2, 1, 0, -1, -2, -3, -4, -6, -8, -12, -17}; static const uint8_t dbm_to_tx_pow[] = {0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x03,0x00}; #else static const int16_t tx_pow_to_dbm[] = {3, 3, 2, 2, 1, 1, 0, -1, -2, -3, -4, -5, -7, -9, -12, -17}; static const uint8_t dbm_to_tx_pow[] = {0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x03, 0x00}; #endif uint16_t at86rf2xx_get_addr_short(at86rf2xx_t *dev) { return (dev->netdev.short_addr[0] << 8) | dev->netdev.short_addr[1]; } void at86rf2xx_set_addr_short(at86rf2xx_t *dev, uint16_t addr) { dev->netdev.short_addr[0] = (uint8_t)(addr); dev->netdev.short_addr[1] = (uint8_t)(addr >> 8); #ifdef MODULE_SIXLOWPAN /* https://tools.ietf.org/html/rfc4944#section-12 requires the first bit to * 0 for unicast addresses */ dev->netdev.short_addr[0] &= 0x7F; #endif at86rf2xx_reg_write(dev, AT86RF2XX_REG__SHORT_ADDR_0, dev->netdev.short_addr[1]); at86rf2xx_reg_write(dev, AT86RF2XX_REG__SHORT_ADDR_1, dev->netdev.short_addr[0]); } uint64_t at86rf2xx_get_addr_long(at86rf2xx_t *dev) { uint64_t addr; uint8_t *ap = (uint8_t *)(&addr); for (int i = 0; i < 8; i++) { ap[i] = dev->netdev.long_addr[i]; } return addr; } void at86rf2xx_set_addr_long(at86rf2xx_t *dev, uint64_t addr) { for (int i = 0; i < 8; i++) { dev->netdev.long_addr[i] = (uint8_t)(addr >> (i * 8)); at86rf2xx_reg_write(dev, (AT86RF2XX_REG__IEEE_ADDR_0 + i), (addr >> ((7 - i) * 8))); } } uint8_t at86rf2xx_get_chan(at86rf2xx_t *dev) { return dev->netdev.chan; } void at86rf2xx_set_chan(at86rf2xx_t *dev, uint8_t channel) { if ((channel < AT86RF2XX_MIN_CHANNEL) || (channel > AT86RF2XX_MAX_CHANNEL) || (dev->netdev.chan == channel)) { return; } dev->netdev.chan = channel; at86rf2xx_configure_phy(dev); } uint8_t at86rf2xx_get_page(at86rf2xx_t *dev) { #ifdef MODULE_AT86RF212B return dev->page; #else (void) dev; return 0; #endif } void at86rf2xx_set_page(at86rf2xx_t *dev, uint8_t page) { #ifdef MODULE_AT86RF212B if ((page != 0) && (page != 2)) { return; } dev->page = page; at86rf2xx_configure_phy(dev); #else (void) dev; (void) page; #endif } uint16_t at86rf2xx_get_pan(at86rf2xx_t *dev) { return dev->netdev.pan; } void at86rf2xx_set_pan(at86rf2xx_t *dev, uint16_t pan) { le_uint16_t le_pan = byteorder_btols(byteorder_htons(pan)); dev->netdev.pan = pan; DEBUG("pan0: %u, pan1: %u\n", le_pan.u8[0], le_pan.u8[1]); at86rf2xx_reg_write(dev, AT86RF2XX_REG__PAN_ID_0, le_pan.u8[0]); at86rf2xx_reg_write(dev, AT86RF2XX_REG__PAN_ID_1, le_pan.u8[1]); } int16_t at86rf2xx_get_txpower(at86rf2xx_t *dev) { #ifdef MODULE_AT86RF212B uint8_t txpower = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_TX_PWR); DEBUG("txpower value: %x\n", txpower); return _tx_pow_to_dbm_212b(dev->netdev.chan, dev->page, txpower); #else uint8_t txpower = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_TX_PWR) & AT86RF2XX_PHY_TX_PWR_MASK__TX_PWR; return tx_pow_to_dbm[txpower]; #endif } void at86rf2xx_set_txpower(at86rf2xx_t *dev, int16_t txpower) { #ifdef MODULE_AT86RF212B txpower += 25; #else txpower += 17; #endif if (txpower < 0) { txpower = 0; #ifdef MODULE_AT86RF212B } else if (txpower > 36) { txpower = 36; #elif MODULE_AT86RF233 } else if (txpower > 21) { txpower = 21; #else } else if (txpower > 20) { txpower = 20; #endif } #ifdef MODULE_AT86RF212B if (dev->netdev.chan == 0) { at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR, dbm_to_tx_pow_868[txpower]); } else if (dev->netdev.chan < 11) { at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR, dbm_to_tx_pow_915[txpower]); } #else at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR, dbm_to_tx_pow[txpower]); #endif } uint8_t at86rf2xx_get_max_retries(at86rf2xx_t *dev) { return (at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0) >> 4); } void at86rf2xx_set_max_retries(at86rf2xx_t *dev, uint8_t max) { max = (max > 7) ? 7 : max; uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0); tmp &= ~(AT86RF2XX_XAH_CTRL_0__MAX_FRAME_RETRIES); tmp |= (max << 4); at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_0, tmp); } uint8_t at86rf2xx_get_csma_max_retries(at86rf2xx_t *dev) { uint8_t tmp; tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0); tmp &= AT86RF2XX_XAH_CTRL_0__MAX_CSMA_RETRIES; tmp >>= 1; return tmp; } void at86rf2xx_set_csma_max_retries(at86rf2xx_t *dev, int8_t retries) { retries = (retries > 5) ? 5 : retries; /* valid values: 0-5 */ retries = (retries < 0) ? 7 : retries; /* max < 0 => disable CSMA (set to 7) */ DEBUG("[at86rf2xx] opt: Set CSMA retries to %u\n", retries); uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0); tmp &= ~(AT86RF2XX_XAH_CTRL_0__MAX_CSMA_RETRIES); tmp |= (retries << 1); at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_0, tmp); } void at86rf2xx_set_csma_backoff_exp(at86rf2xx_t *dev, uint8_t min, uint8_t max) { max = (max > 8) ? 8 : max; min = (min > max) ? max : min; DEBUG("[at86rf2xx] opt: Set min BE=%u, max BE=%u\n", min, max); at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_BE, (max << 4) | (min)); } void at86rf2xx_set_csma_seed(at86rf2xx_t *dev, uint8_t entropy[2]) { if(entropy == NULL) { DEBUG("[at86rf2xx] opt: CSMA seed entropy is nullpointer\n"); return; } DEBUG("[at86rf2xx] opt: Set CSMA seed to 0x%x 0x%x\n", entropy[0], entropy[1]); at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_0, entropy[0]); uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1); tmp &= ~(AT86RF2XX_CSMA_SEED_1__CSMA_SEED_1); tmp |= entropy[1] & AT86RF2XX_CSMA_SEED_1__CSMA_SEED_1; at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp); } int8_t at86rf2xx_get_cca_threshold(at86rf2xx_t *dev) { int8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CCA_THRES); tmp &= AT86RF2XX_CCA_THRES_MASK__CCA_ED_THRES; tmp <<= 1; return (RSSI_BASE_VAL + tmp); } void at86rf2xx_set_cca_threshold(at86rf2xx_t *dev, int8_t value) { /* ensure the given value is negative, since a CCA threshold > 0 is just impossible: thus, any positive value given is considered to be the absolute value of the actually wanted threshold */ if (value > 0) { value = -value; } /* transform the dBm value in the form that will fit in the AT86RF2XX_REG__CCA_THRES register */ value -= RSSI_BASE_VAL; value >>= 1; value &= AT86RF2XX_CCA_THRES_MASK__CCA_ED_THRES; value |= AT86RF2XX_CCA_THRES_MASK__RSVD_HI_NIBBLE; at86rf2xx_reg_write(dev, AT86RF2XX_REG__CCA_THRES, value); } void at86rf2xx_set_option(at86rf2xx_t *dev, uint16_t option, bool state) { uint8_t tmp; DEBUG("set option %i to %i\n", option, state); /* set option field */ if (state) { dev->netdev.flags |= option; /* trigger option specific actions */ switch (option) { case AT86RF2XX_OPT_CSMA: DEBUG("[at86rf2xx] opt: enabling CSMA mode" \ "(4 retries, min BE: 3 max BE: 5)\n"); /* Initialize CSMA seed with hardware address */ at86rf2xx_set_csma_seed(dev, dev->netdev.long_addr); at86rf2xx_set_csma_max_retries(dev, 4); at86rf2xx_set_csma_backoff_exp(dev, 3, 5); break; case AT86RF2XX_OPT_PROMISCUOUS: DEBUG("[at86rf2xx] opt: enabling PROMISCUOUS mode\n"); /* disable auto ACKs in promiscuous mode */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1); tmp |= AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK; at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp); /* enable promiscuous mode */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_1); tmp |= AT86RF2XX_XAH_CTRL_1__AACK_PROM_MODE; at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_1, tmp); break; case AT86RF2XX_OPT_AUTOACK: DEBUG("[at86rf2xx] opt: enabling auto ACKs\n"); tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1); tmp &= ~(AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK); at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp); break; case AT86RF2XX_OPT_TELL_RX_START: DEBUG("[at86rf2xx] opt: enabling SFD IRQ\n"); tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK); tmp |= AT86RF2XX_IRQ_STATUS_MASK__RX_START; at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp); break; default: /* do nothing */ break; } } else { dev->netdev.flags &= ~(option); /* trigger option specific actions */ switch (option) { case AT86RF2XX_OPT_CSMA: DEBUG("[at86rf2xx] opt: disabling CSMA mode\n"); /* setting retries to -1 means CSMA disabled */ at86rf2xx_set_csma_max_retries(dev, -1); break; case AT86RF2XX_OPT_PROMISCUOUS: DEBUG("[at86rf2xx] opt: disabling PROMISCUOUS mode\n"); /* disable promiscuous mode */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_1); tmp &= ~(AT86RF2XX_XAH_CTRL_1__AACK_PROM_MODE); at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_1, tmp); /* re-enable AUTOACK only if the option is set */ if (dev->netdev.flags & AT86RF2XX_OPT_AUTOACK) { tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1); tmp &= ~(AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK); at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp); } break; case AT86RF2XX_OPT_AUTOACK: DEBUG("[at86rf2xx] opt: disabling auto ACKs\n"); tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1); tmp |= AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK; at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp); break; case AT86RF2XX_OPT_TELL_RX_START: DEBUG("[at86rf2xx] opt: disabling SFD IRQ\n"); tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK); tmp &= ~AT86RF2XX_IRQ_STATUS_MASK__RX_START; at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp); break; default: /* do nothing */ break; } } } static inline void _set_state(at86rf2xx_t *dev, uint8_t state) { at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_STATE, state); /* To prevent a possible race condition when changing to * RX_AACK_ON state the state doesn't get read back in that * case. See discussion * in https://github.com/RIOT-OS/RIOT/pull/5244 */ if (state != AT86RF2XX_STATE_RX_AACK_ON) { while (at86rf2xx_get_status(dev) != state); } dev->state = state; } void at86rf2xx_set_state(at86rf2xx_t *dev, uint8_t state) { uint8_t old_state = at86rf2xx_get_status(dev); /* make sure there is no ongoing transmission, or state transition already * in progress */ while (old_state == AT86RF2XX_STATE_BUSY_RX_AACK || old_state == AT86RF2XX_STATE_BUSY_TX_ARET || old_state == AT86RF2XX_STATE_IN_PROGRESS) { old_state = at86rf2xx_get_status(dev); } if (state == old_state) { return; } /* we need to go via PLL_ON if we are moving between RX_AACK_ON <-> TX_ARET_ON */ if ((old_state == AT86RF2XX_STATE_RX_AACK_ON && state == AT86RF2XX_STATE_TX_ARET_ON) || (old_state == AT86RF2XX_STATE_TX_ARET_ON && state == AT86RF2XX_STATE_RX_AACK_ON)) { _set_state(dev, AT86RF2XX_STATE_PLL_ON); } /* check if we need to wake up from sleep mode */ else if (old_state == AT86RF2XX_STATE_SLEEP) { DEBUG("at86rf2xx: waking up from sleep mode\n"); at86rf2xx_assert_awake(dev); } if (state == AT86RF2XX_STATE_SLEEP) { /* First go to TRX_OFF */ at86rf2xx_force_trx_off(dev); /* Discard all IRQ flags, framebuffer is lost anyway */ at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS); /* Go to SLEEP mode from TRX_OFF */ gpio_set(dev->params.sleep_pin); dev->state = state; } else { _set_state(dev, state); } } void at86rf2xx_reset_state_machine(at86rf2xx_t *dev) { uint8_t old_state; at86rf2xx_assert_awake(dev); /* Wait for any state transitions to complete before forcing TRX_OFF */ do { old_state = at86rf2xx_get_status(dev); } while (old_state == AT86RF2XX_STATE_IN_PROGRESS); at86rf2xx_force_trx_off(dev); }