Blame view

RIOT/cpu/samd21/periph/uart.c 4.91 KB
fb11e647   vrobic   reseau statique a...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  /*
   * Copyright (C) 2015 Freie Universitรคt Berlin
   *
   * This file is subject to the terms and conditions of the GNU Lesser
   * General Public License v2.1. See the file LICENSE in the top level
   * directory for more details.
   */
  
  /**
   * @ingroup     driver_periph
   * @{
   *
   * @file
   * @brief       Low-level UART driver implementation
   *
   * @author      Thomas Eichinger <thomas.eichinger@fu-berlin.de>
   * @author      Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
   * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
   *
   * @}
   */
  
  #include "cpu.h"
  
  #include "periph/uart.h"
  #include "periph/gpio.h"
  
  /**
   * @brief   Allocate memory to store the callback functions
   */
  static uart_isr_ctx_t uart_ctx[UART_NUMOF];
  
  /**
   * @brief   Get the pointer to the base register of the given UART device
   *
   * @param[in] dev       UART device identifier
   *
   * @return              base register address
   */
  static inline SercomUsart *_uart(uart_t dev)
  {
      return uart_config[dev].dev;
  }
  
  static int init_base(uart_t uart, uint32_t baudrate);
  
  int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
  {
      /* initialize basic functionality */
      int res = init_base(uart, baudrate);
      if (res != UART_OK) {
          return res;
      }
  
      /* register callbacks */
      uart_ctx[uart].rx_cb = rx_cb;
      uart_ctx[uart].arg = arg;
      /* configure interrupts and enable RX interrupt */
      _uart(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
      NVIC_EnableIRQ(SERCOM0_IRQn + _sercom_id(_uart(uart)));
      return UART_OK;
  }
  
  static int init_base(uart_t uart, uint32_t baudrate)
  {
      uint32_t baud;
      SercomUsart *dev;
  
      if ((unsigned int)uart >= UART_NUMOF) {
          return UART_NODEV;
      }
  
      /* get the devices base register */
      dev = _uart(uart);
      /* calculate baudrate */
      baud =  ((((uint32_t)CLOCK_CORECLOCK * 10) / baudrate) / 16);
      /* enable sync and async clocks */
      uart_poweron(uart);
      /* configure pins */
      gpio_init(uart_config[uart].rx_pin, GPIO_IN);
      gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux);
      gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
      gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
      /* reset the UART device */
      dev->CTRLA.reg = SERCOM_USART_CTRLA_SWRST;
      while (dev->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_SWRST) {}
      /* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified
       * by the board in the periph_conf.h, x16 sampling and use internal clock */
      dev->CTRLA.reg = (SERCOM_USART_CTRLA_DORD |
                        SERCOM_USART_CTRLA_SAMPR(0x1) |
                        SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) |
                        SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) |
                        SERCOM_USART_CTRLA_MODE_USART_INT_CLK);
      /* set baudrate */
      dev->BAUD.FRAC.FP = (baud % 10);
      dev->BAUD.FRAC.BAUD = (baud / 10);
      /* enable receiver and transmitter, use 1 stop bit */
      dev->CTRLB.reg = (SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN);
      while (dev->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_CTRLB) {}
      /* finally, enable the device */
      dev->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
      return UART_OK;
  }
  
  void uart_write(uart_t uart, const uint8_t *data, size_t len)
  {
      for (size_t i = 0; i < len; i++) {
          while (!(_uart(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_DRE)) {}
          _uart(uart)->DATA.reg = data[i];
      }
  }
  
  void uart_poweron(uart_t uart)
  {
      PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << _sercom_id(_uart(uart)));
      GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN |
                           GCLK_CLKCTRL_GEN_GCLK0 |
                           (SERCOM0_GCLK_ID_CORE + _sercom_id(_uart(uart))) <<
                            GCLK_CLKCTRL_ID_Pos);
      while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
  }
  
  void uart_poweroff(uart_t uart)
  {
      PM->APBCMASK.reg &= ~(PM_APBCMASK_SERCOM0 << _sercom_id(_uart(uart)));
      GCLK->CLKCTRL.reg = ((SERCOM0_GCLK_ID_CORE + _sercom_id(_uart(uart))) <<
                            GCLK_CLKCTRL_ID_Pos);
      while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
  }
  
  static inline void irq_handler(int dev)
  {
      SercomUsart *uart = _uart(dev);
  
      if (uart->INTFLAG.reg & SERCOM_USART_INTFLAG_RXC) {
          /* interrupt flag is cleared by reading the data register */
          uart_ctx[dev].rx_cb(uart_ctx[dev].arg, (uint8_t)(uart->DATA.reg));
      }
      else if (uart->INTFLAG.reg & SERCOM_USART_INTFLAG_ERROR) {
          /* clear error flag */
          uart->INTFLAG.reg = SERCOM_USART_INTFLAG_ERROR;
      }
      cortexm_isr_end();
  }
  
  #ifdef UART_0_ISR
  void UART_0_ISR(void)
  {
      irq_handler(0);
  }
  #endif
  
  #ifdef UART_1_ISR
  void UART_1_ISR(void)
  {
      irq_handler(1);
  }
  #endif
  
  #ifdef UART_2_ISR
  void UART_2_ISR(void)
  {
      irq_handler(2);
  }
  #endif
  
  #ifdef UART_3_ISR
  void UART_3_ISR(void)
  {
      irq_handler(3);
  }
  #endif
  
  #ifdef UART_4_ISR
  void UART_4_ISR(void)
  {
      irq_handler(4);
  }
  #endif
  
  #ifdef UART_5_ISR
  void UART_5_ISR(void)
  {
      irq_handler(5);
  }
  #endif