Blame view

RIOT/sys/hashes/sha256.c 14.2 KB
fb11e647   vrobic   reseau statique a...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  /*-
   * Copyright 2005 Colin Percival
   * Copyright 2013 Christian Mehlis & René Kijewski
   * Copyright 2016 Martin Landsmann <martin.landsmann@haw-hamburg.de>
   * All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in the
   *    documentation and/or other materials provided with the distribution.
   *
   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   * SUCH DAMAGE.
   *
   * $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $
   */
  
  /**
   * @ingroup     sys_hashes
   * @{
   *
   * @file
   * @brief       SHA256 hash function implementation
   *
   * @author      Colin Percival
   * @author      Christian Mehlis
   * @author      Rene Kijewski
   * @author      Martin Landsmann
   *
   * @}
   */
  
  #include <string.h>
  #include <assert.h>
  
  #include "hashes/sha256.h"
  #include "board.h"
  
  #ifdef __BIG_ENDIAN__
  /* Copy a vector of big-endian uint32_t into a vector of bytes */
  #define be32enc_vect memcpy
  
  /* Copy a vector of bytes into a vector of big-endian uint32_t */
  #define be32dec_vect memcpy
  
  #else /* !__BIG_ENDIAN__ */
  
  /*
   * Encode a length len/4 vector of (uint32_t) into a length len vector of
   * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
   */
  static void be32enc_vect(void *dst_, const void *src_, size_t len)
  {
      if ((uintptr_t)dst_ % sizeof(uint32_t) == 0 &&
          (uintptr_t)src_ % sizeof(uint32_t) == 0) {
          uint32_t *dst = dst_;
          const uint32_t *src = src_;
          for (size_t i = 0; i < len / 4; i++) {
              dst[i] = __builtin_bswap32(src[i]);
          }
      }
      else {
          uint8_t *dst = dst_;
          const uint8_t *src = src_;
          for (size_t i = 0; i < len; i += 4) {
              dst[i] = src[i + 3];
              dst[i + 1] = src[i + 2];
              dst[i + 2] = src[i + 1];
              dst[i + 3] = src[i];
          }
      }
  }
  
  /*
   * Decode a big-endian length len vector of (unsigned char) into a length
   * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
   */
  #define be32dec_vect be32enc_vect
  
  #endif /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */
  
  /* Elementary functions used by SHA256 */
  #define Ch(x, y, z) ((x & (y ^ z)) ^ z)
  #define Maj(x, y, z)    ((x & (y | z)) | (y & z))
  #define SHR(x, n)   (x >> n)
  #define ROTR(x, n)  ((x >> n) | (x << (32 - n)))
  #define S0(x)       (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
  #define S1(x)       (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
  #define s0(x)       (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
  #define s1(x)       (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
  
  static const uint32_t K[64] = {
      0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
      0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
      0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
      0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
      0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
      0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
      0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
      0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
      0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
      0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
      0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
      0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
      0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
      0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
      0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
      0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
  };
  
  /*
   * SHA256 block compression function.  The 256-bit state is transformed via
   * the 512-bit input block to produce a new state.
   */
  static void sha256_transform(uint32_t *state, const unsigned char block[64])
  {
      uint32_t W[64];
      uint32_t S[8];
  
      /* 1. Prepare message schedule W. */
      be32dec_vect(W, block, 64);
      for (int i = 16; i < 64; i++) {
          W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
      }
  
      /* 2. Initialize working variables. */
      memcpy(S, state, 32);
  
      /* 3. Mix. */
      for (int i = 0; i < 64; ++i) {
          uint32_t e = S[(68 - i) % 8], f = S[(69 - i) % 8];
          uint32_t g = S[(70 - i) % 8], h = S[(71 - i) % 8];
          uint32_t t0 = h + S1(e) + Ch(e, f, g) + W[i] + K[i];
  
          uint32_t a = S[(64 - i) % 8], b = S[(65 - i) % 8];
          uint32_t c = S[(66 - i) % 8], d = S[(67 - i) % 8];
          uint32_t t1 = S0(a) + Maj(a, b, c);
  
          S[(67 - i) % 8] = d + t0;
          S[(71 - i) % 8] = t0 + t1;
      }
  
      /* 4. Mix local working variables into global state */
      for (int i = 0; i < 8; i++) {
          state[i] += S[i];
      }
  }
  
  static unsigned char PAD[64] = {
      0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  };
  
  /* Add padding and terminating bit-count. */
  static void sha256_pad(sha256_context_t *ctx)
  {
      /*
       * Convert length to a vector of bytes -- we do this now rather
       * than later because the length will change after we pad.
       */
      unsigned char len[8];
  
      be32enc_vect(len, ctx->count, 8);
  
      /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
      uint32_t r = (ctx->count[1] >> 3) & 0x3f;
      uint32_t plen = (r < 56) ? (56 - r) : (120 - r);
      sha256_update(ctx, PAD, (size_t) plen);
  
      /* Add the terminating bit-count */
      sha256_update(ctx, len, 8);
  }
  
  /* SHA-256 initialization.  Begins a SHA-256 operation. */
  void sha256_init(sha256_context_t *ctx)
  {
      /* Zero bits processed so far */
      ctx->count[0] = ctx->count[1] = 0;
  
      /* Magic initialization constants */
      ctx->state[0] = 0x6A09E667;
      ctx->state[1] = 0xBB67AE85;
      ctx->state[2] = 0x3C6EF372;
      ctx->state[3] = 0xA54FF53A;
      ctx->state[4] = 0x510E527F;
      ctx->state[5] = 0x9B05688C;
      ctx->state[6] = 0x1F83D9AB;
      ctx->state[7] = 0x5BE0CD19;
  }
  
  /* Add bytes into the hash */
  void sha256_update(sha256_context_t *ctx, const void *data, size_t len)
  {
      /* Number of bytes left in the buffer from previous updates */
      uint32_t r = (ctx->count[1] >> 3) & 0x3f;
  
      /* Convert the length into a number of bits */
      uint32_t bitlen1 = ((uint32_t) len) << 3;
      uint32_t bitlen0 = ((uint32_t) len) >> 29;
  
      /* Update number of bits */
      if ((ctx->count[1] += bitlen1) < bitlen1) {
          ctx->count[0]++;
      }
  
      ctx->count[0] += bitlen0;
  
      /* Handle the case where we don't need to perform any transforms */
      if (len < 64 - r) {
          memcpy(&ctx->buf[r], data, len);
          return;
      }
  
      /* Finish the current block */
      const unsigned char *src = data;
  
      memcpy(&ctx->buf[r], src, 64 - r);
      sha256_transform(ctx->state, ctx->buf);
      src += 64 - r;
      len -= 64 - r;
  
      /* Perform complete blocks */
      while (len >= 64) {
          sha256_transform(ctx->state, src);
          src += 64;
          len -= 64;
      }
  
      /* Copy left over data into buffer */
      memcpy(ctx->buf, src, len);
  }
  
  /*
   * SHA-256 finalization.  Pads the input data, exports the hash value,
   * and clears the context state.
   */
  void sha256_final(sha256_context_t *ctx, void *dst)
  {
      /* Add padding */
      sha256_pad(ctx);
  
      /* Write the hash */
      be32enc_vect(dst, ctx->state, 32);
  
      /* Clear the context state */
      memset((void *) ctx, 0, sizeof(*ctx));
  }
  
  void *sha256(const void *data, size_t len, void *digest)
  {
      sha256_context_t c;
      static unsigned char m[SHA256_DIGEST_LENGTH];
  
      if (digest == NULL) {
          digest = m;
      }
  
      sha256_init(&c);
      sha256_update(&c, data, len);
      sha256_final(&c, digest);
  
      return digest;
  }
  
  const void *hmac_sha256(const void *key, size_t key_length,
                          const void *data, size_t len, void *digest)
  {
      unsigned char k[SHA256_INTERNAL_BLOCK_SIZE];
  
      memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE);
  
      if (key_length > SHA256_INTERNAL_BLOCK_SIZE) {
          sha256(key, key_length, k);
      }
      else {
          memcpy((void *)k, key, key_length);
      }
  
      /*
       * create the inner and outer keypads
       * rising hamming distance enforcing i_* and o_* are distinct
       * in at least one bit
       */
      unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
      unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
  
      for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) {
          o_key_pad[i] = 0x5c ^ k[i];
          i_key_pad[i] = 0x36 ^ k[i];
      }
  
      /*
       * Create the inner hash
       * tmp = hash(i_key_pad CONCAT message)
       */
      sha256_context_t c;
      unsigned char tmp[SHA256_DIGEST_LENGTH];
  
      sha256_init(&c);
      sha256_update(&c, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
      sha256_update(&c, data, len);
      sha256_final(&c, tmp);
  
      static unsigned char m[SHA256_DIGEST_LENGTH];
  
      if (digest == NULL) {
          digest = m;
      }
  
      /*
       * Create the outer hash
       * result = hash(o_key_pad CONCAT tmp)
       */
      sha256_init(&c);
      sha256_update(&c, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
      sha256_update(&c, tmp, SHA256_DIGEST_LENGTH);
      sha256_final(&c, digest);
  
      return digest;
  }
  
  /**
   * @brief helper to compute sha256 inplace for the given buffer
   *
   * @param[in, out] element the buffer to compute a sha256 and store it back to it
   *
   */
  static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH])
  {
      sha256_context_t ctx;
  
      sha256_init(&ctx);
      sha256_update(&ctx, element, SHA256_DIGEST_LENGTH);
      sha256_final(&ctx, element);
  }
  
  void *sha256_chain(const void *seed, size_t seed_length,
                     size_t elements, void *tail_element)
  {
      unsigned char tmp_element[SHA256_DIGEST_LENGTH];
  
      /* assert if no sha256-chain can be created */
      assert(elements >= 2);
  
      /* 1st iteration */
      sha256(seed, seed_length, tmp_element);
  
      /* perform consecutive iterations minus the first one */
      for (size_t i = 0; i < (elements - 1); ++i) {
          sha256_inplace(tmp_element);
      }
  
      /* store the result */
      memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);
  
      return tail_element;
  }
  
  void *sha256_chain_with_waypoints(const void *seed,
                                    size_t seed_length,
                                    size_t elements,
                                    void *tail_element,
                                    sha256_chain_idx_elm_t *waypoints,
                                    size_t *waypoints_length)
  {
      /* assert if no sha256-chain can be created */
      assert(elements >= 2);
  
      /* assert to prevent division by 0 */
      assert(*waypoints_length > 0);
  
      /* assert if no waypoints can be created */
      assert(*waypoints_length > 1);
  
      /* if we have enough space we store the whole chain */
      if (*waypoints_length >= elements) {
          /* 1st iteration */
          sha256(seed, seed_length, waypoints[0].element);
          waypoints[0].index = 0;
  
          /* perform consecutive iterations starting at index 1*/
          for (size_t i = 1; i < elements; ++i) {
              sha256_context_t ctx;
              sha256_init(&ctx);
              sha256_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH);
              sha256_final(&ctx, waypoints[i].element);
              waypoints[i].index = i;
          }
  
          /* store the result */
          memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH);
          *waypoints_length = (elements - 1);
  
          return tail_element;
      }
      else {
          unsigned char tmp_element[SHA256_DIGEST_LENGTH];
          size_t waypoint_streak = (elements / *waypoints_length);
  
          /* 1st waypoint iteration */
          sha256(seed, seed_length, tmp_element);
          for (size_t i = 1; i < waypoint_streak; ++i) {
              sha256_inplace(tmp_element);
          }
          memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH);
          waypoints[0].index = (waypoint_streak - 1);
  
          /* index of the current computed element in the chain */
          size_t index = (waypoint_streak - 1);
  
          /* consecutive waypoint iterations */
          size_t j = 1;
          for (; j < *waypoints_length; ++j) {
              for (size_t i = 0; i < waypoint_streak; ++i) {
                  sha256_inplace(tmp_element);
                  index++;
              }
              memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH);
              waypoints[j].index = index;
          }
  
          /* store/pass the last used index in the waypoint array */
          *waypoints_length = (j - 1);
  
          /* remaining iterations down to elements */
          for (size_t i = index; i < (elements - 1); ++i) {
              sha256_inplace(tmp_element);
          }
  
          /* store the result */
          memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);
  
          return tail_element;
      }
  }
  
  int sha256_chain_verify_element(void *element,
                                  size_t element_index,
                                  void *tail_element,
                                  size_t chain_length)
  {
      unsigned char tmp_element[SHA256_DIGEST_LENGTH];
  
      int delta_count = (chain_length - element_index);
  
      /* assert if we have an index mismatch */
      assert(delta_count >= 1);
  
      memcpy((void *)tmp_element, element, SHA256_DIGEST_LENGTH);
  
      /* perform all consecutive iterations down to tail_element */
      for (int i = 0; i < (delta_count - 1); ++i) {
          sha256_inplace(tmp_element);
      }
  
      /* return if the computed element equals the tail_element */
      return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0);
  }