fb11e647
vrobic
reseau statique a...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
* Copyright (C) 2003-2005 by Christopher R. Hertel
* 2015 Freie Universitรคt Berlin
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @ingroup sys_hashes
* @{
*
* @file
* @brief Implements the MD5 hash algorithm, as described in RFC 1321
*
* @author Christopher R. Hertel <crh@ubiqx.mn.org>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "hashes/md5.h"
/**
* @brief In round one, the values of k (which are used to index
* particular four-byte sequences in the input) are simply
* sequential. In later rounds, however, they are a bit more
* varied. Rather than calculate the values of k (which may
* or may not be possible--I haven't though about it) the
* values are stored in this array.
*/
static const uint8_t K[3][16] = {
/* Round 1: skipped (since it is simply sequential). */
{ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12 }, /* R2 */
{ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2 }, /* R3 */
{ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 } /* R4 */
};
/**
* @brief In each round there is a left rotate operation performed as
* part of the 16 permutations. The number of bits varies in
* a repeating patter. This array keeps track of the patterns
* used in each round.
*/
static const uint8_t S[4][4] = {
{ 7, 12, 17, 22 }, /* Round 1 */
{ 5, 9, 14, 20 }, /* Round 2 */
{ 4, 11, 16, 23 }, /* Round 3 */
{ 6, 10, 15, 21 } /* Round 4 */
};
/**
* @brief There are four rounds of 16 permutations for a total of 64.
* In each of these 64 permutation operations, a different
* constant value is added to the mix. The constants are
* based on the sine function...read RFC 1321 for more detail.
* In any case, the correct constants are stored in the T[][]
* array. They're divided up into four groups of 16.
*/
static const uint32_t T[4][16] = {
{ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, /* Round 1 */
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 },
{ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, /* Round 2 */
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a },
{ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, /* Round 3 */
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 },
{ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, /* Round 4 */
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 },
};
/**
* @brief md5F(), md5G(), md5H(), and md5I() are described in RFC 1321
*
* All of these operations are bitwise, and so not impacted by endian-ness.
* @{
*/
#define md5F( X, Y, Z ) (((X) &(Y)) | ((~(X)) & (Z)))
#define md5G( X, Y, Z ) (((X) &(Z)) | ((Y) &(~(Z))))
#define md5H( X, Y, Z ) ((X) ^ (Y) ^ (Z))
#define md5I( X, Y, Z ) ((Y) ^ ((X) | (~(Z))))
/** @} */
/**
* @brief Extract one byte from a 32-bit word
*
* A value of 0 for <idx> indicates the lowest order byte, while 3 indicates
* the highest order byte.
*/
#define GETBYTE(L, idx) ((uint8_t)((L >> (((idx) & 0x03) << 3)) & 0xFF))
/**
* @brief Permute the ABCD "registers" using the 64-byte <block> as a driver
*
* The MD5 algorithm operates on a set of four longwords stored (conceptually)
* in four "registers". It is easy to imagine a simple MD4/5 chip that would
* operate this way. In any case, the mangling of the contents of those
* registers is driven by the input message. The message is chopped and finally
* padded into 64-byte chunks and each chunk is used to manipulate the contents
* of the registers.
*
* The MD5 Algorithm calls for padding the input to ensure that it is a multiple
* of 64 bytes in length. The last 16 bytes of the padding space are used to
* store the message length (the length of the original message, before padding,
* expressed in terms of bits). If there is not enough room for 16 bytes worth
* of bitcount (eg., if the original message was 122 bytes long) then the block
* is padded to the end with zeros and passed to this function. Then *another*
* block is filled with zeros except for the last 16 bytes which contain the
* length.
*
* Oh... and the algorithm requires that there be at least one padding byte. The
* first padding byte has a value of 0x80, and any others are 0x00.
*
* @param[in|out] abcd Pointer to an array of four unsigned longwords
* @param[in] block Array of bytes, must be 64 bytes in size
*/
static void permute(uint32_t abcd[4], const uint8_t block[64] )
{
uint8_t s;
uint32_t a, b, c, d;
uint32_t keep_abcd[4];
uint32_t x[16];
/* Store the current ABCD values for later re-use */
for (int i = 0; i < 4; i++) {
keep_abcd[i] = abcd[i];
}
/* Convert the input block into an array of unsigned longs, taking care
* to read the block in Little Endian order (the algorithm assumes this).
* The uint32_t values are then handled in host order. */
for (int i = 0, j = 0; i < 16; i++) {
x[i] = (uint32_t)block[j++];
x[i] |= ((uint32_t)block[j++] << 8);
x[i] |= ((uint32_t)block[j++] << 16);
x[i] |= ((uint32_t)block[j++] << 24);
}
/* This loop performs the four rounds of permutations.
* The rounds are each very similar. The differences are in three areas:
* - The function (F, G, H, or I) used to perform bitwise permutations
* on the registers,
* - The order in which values from X[] are chosen.
* - Changes to the number of bits by which the registers are rotated.
* This implementation uses a switch statement to deal with some of the
* differences between rounds. Other differences are handled by storing
* values in arrays and using the round number to select the correct set
* of values.
*
* (My implementation appears to be a poor compromise between speed, size,
* and clarity. Ugh. [crh]) */
for (int round = 0; round < 4; round++) {
for (int i = 0; i < 16; i++) {
/* <j> handles the rotation of ABCD */
int j = (4 - (i % 4)) & 0x3;
/* <s> is the bit shift for this iteration */
s = S[round][i % 4];
/* Copy the b,c,d values per ABCD rotation. This isn't really
* necessary, it just looks clean & will hopefully be optimized
* away. */
b = abcd[(j + 1) & 0x3];
c = abcd[(j + 2) & 0x3];
d = abcd[(j + 3) & 0x3];
/* The actual perumation function.
* This is broken out to minimize the code within the switch(). */
switch (round) {
case 0: /* round 1 */
a = md5F( b, c, d ) + x[i];
break;
case 1: /* round 2 */
a = md5G( b, c, d ) + x[ K[0][i] ];
break;
case 2: /* round 3 */
a = md5H( b, c, d ) + x[ K[1][i] ];
break;
default: /* round 4 */
a = md5I( b, c, d ) + x[ K[2][i] ];
break;
}
a = 0xFFFFFFFF & (abcd[j] + a + T[round][i]);
abcd[j] = b + (0xFFFFFFFF & ((a << s) | (a >> (32 - s))));
}
}
/* Use the stored original A, B, C, D values to perform
* one last convolution. */
for (int i = 0; i < 4; i++) {
abcd[i] = (abcd[i] + keep_abcd[i]);
}
}
void md5_init(md5_ctx_t *ctx)
{
ctx->len = 0;
ctx->b_used = 0;
/* The array ABCD[] contains the four 4-byte "registers" that are
* manipulated to produce the MD5 digest. The input acts upon the registers,
* not the other way 'round. The initial values are thosegiven in RFC 1321
* (pg. 4). Note, however, that RFC 1321 provides these values as bytes, not
* as longwords, and the bytes are arranged in little-endian order as if
* they were the bytes of (little endian) 32-bit ints. That's confusing as
* all getout (to me, anyway). The values given here are provided as 32-bit
* values in C language format, so they are endian-agnostic. */
ctx->abcd[0] = 0x67452301;
ctx->abcd[1] = 0xefcdab89;
ctx->abcd[2] = 0x98badcfe;
ctx->abcd[3] = 0x10325476;
}
void md5_update(md5_ctx_t *ctx, const void *data, size_t len)
{
/* Add the new block's length to the total length. */
ctx->len += (uint32_t)len;
/* Copy the new block's data into the context block.
* Call the permute() function whenever the context block is full. */
for (size_t i = 0; i < len; i++) {
const uint8_t *d = data;
ctx->block[ctx->b_used] = d[i];
(ctx->b_used)++;
if (64 == ctx->b_used) {
permute(ctx->abcd, ctx->block);
ctx->b_used = 0;
}
}
}
void md5_final(md5_ctx_t *ctx, void *digest)
{
uint32_t l;
/* Add the required 0x80 padding initiator byte.
* The md5_update() function always permutes and resets the context
* block when it gets full, so we know that there must be at least one
* free byte in the context block.
*/
ctx->block[ctx->b_used] = 0x80;
(ctx->b_used)++;
/* Zero out any remaining free bytes in the context block. */
for (int i = ctx->b_used; i < 64; i++) {
ctx->block[i] = 0;
}
/* We need 8 bytes to store the length field.
* If we don't have 8, call permute() and reset the context block. */
if (56 < ctx->b_used) {
permute(ctx->abcd, ctx->block);
for (int i = 0; i < 64; i++) {
ctx->block[i] = 0;
}
}
/* Add the total length and perform the final perumation.
* Note: The 60'th byte is read from the *original* <ctx->len> value
* and shifted to the correct position. This neatly avoids
* any MAXINT numeric overflow issues. */
l = ctx->len << 3;
for (int i = 0; i < 4; i++) {
ctx->block[56 + i] |= GETBYTE(l, i);
}
ctx->block[60] = ((GETBYTE(ctx->len, 3) & 0xE0) >> 5); /* See Above! */
permute(ctx->abcd, ctx->block);
/* Now copy the result into the output buffer and we're done */
for (int i = 0; i < 4; i++) {
uint8_t *d = digest;
d[ 0 + i] = GETBYTE(ctx->abcd[0], i);
d[ 4 + i] = GETBYTE(ctx->abcd[1], i);
d[ 8 + i] = GETBYTE(ctx->abcd[2], i);
d[12 + i] = GETBYTE(ctx->abcd[3], i);
}
}
void md5(void *digest, const void *data, size_t len)
{
md5_ctx_t ctx;
md5_init(&ctx);
md5_update(&ctx, data, len);
md5_final(&ctx, digest);
}
|