Blame view

RIOT/core/thread.c 5.96 KB
fb11e647   vrobic   reseau statique a...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  /*
   * Copyright (C) 2013 Freie Universitรคt Berlin
   *
   * This file is subject to the terms and conditions of the GNU Lesser
   * General Public License v2.1. See the file LICENSE in the top level
   * directory for more details.
   */
  
  /**
   * @ingroup     core_thread
   * @{
   *
   * @file
   * @brief       Threading implementation
   *
   * @author      Kaspar Schleiser <kaspar@schleiser.de>
   *
   * @}
   */
  
  #include <errno.h>
  #include <stdio.h>
  
  #include "assert.h"
  #include "thread.h"
  #include "irq.h"
  
  #define ENABLE_DEBUG    (0)
  #include "debug.h"
  #include "bitarithm.h"
  #include "sched.h"
  
  volatile thread_t *thread_get(kernel_pid_t pid)
  {
      if (pid_is_valid(pid)) {
          return sched_threads[pid];
      }
      return NULL;
  }
  
  int thread_getstatus(kernel_pid_t pid)
  {
      volatile thread_t *t = thread_get(pid);
      return t ? (int) t->status : STATUS_NOT_FOUND;
  }
  
  #ifdef DEVELHELP
  const char *thread_getname(kernel_pid_t pid)
  {
      volatile thread_t *t = thread_get(pid);
      return t ? t->name : NULL;
  }
  #endif
  
  void thread_sleep(void)
  {
      if (irq_is_in()) {
          return;
      }
  
      unsigned state = irq_disable();
      sched_set_status((thread_t *)sched_active_thread, STATUS_SLEEPING);
      irq_restore(state);
      thread_yield_higher();
  }
  
  int thread_wakeup(kernel_pid_t pid)
  {
      DEBUG("thread_wakeup: Trying to wakeup PID %" PRIkernel_pid "...\n", pid);
  
      unsigned old_state = irq_disable();
  
      thread_t *other_thread = (thread_t *) thread_get(pid);
  
      if (!other_thread) {
          DEBUG("thread_wakeup: Thread does not exist!\n");
      }
      else if (other_thread->status == STATUS_SLEEPING) {
          DEBUG("thread_wakeup: Thread is sleeping.\n");
  
          sched_set_status(other_thread, STATUS_RUNNING);
  
          irq_restore(old_state);
          sched_switch(other_thread->priority);
  
          return 1;
      }
      else {
          DEBUG("thread_wakeup: Thread is not sleeping!\n");
      }
  
      irq_restore(old_state);
      return STATUS_NOT_FOUND;
  }
  
  void thread_yield(void)
  {
      unsigned old_state = irq_disable();
      thread_t *me = (thread_t *)sched_active_thread;
      if (me->status >= STATUS_ON_RUNQUEUE) {
          clist_lpoprpush(&sched_runqueues[me->priority]);
      }
      irq_restore(old_state);
  
      thread_yield_higher();
  }
  
  void thread_add_to_list(list_node_t *list, thread_t *thread)
  {
      assert (thread->status < STATUS_ON_RUNQUEUE);
  
      uint16_t my_prio = thread->priority;
      list_node_t *new_node = (list_node_t*)&thread->rq_entry;
  
      while (list->next) {
          thread_t *list_entry = container_of((clist_node_t*)list->next, thread_t, rq_entry);
          if (list_entry->priority > my_prio) {
              break;
          }
          list = list->next;
      }
  
      new_node->next = list->next;
      list->next = new_node;
  }
  
  #ifdef DEVELHELP
  uintptr_t thread_measure_stack_free(char *stack)
  {
      uintptr_t *stackp = (uintptr_t *)stack;
  
      /* assume that the comparison fails before or after end of stack */
      /* assume that the stack grows "downwards" */
      while (*stackp == (uintptr_t) stackp) {
          stackp++;
      }
  
      uintptr_t space_free = (uintptr_t) stackp - (uintptr_t) stack;
      return space_free;
  }
  #endif
  
  kernel_pid_t thread_create(char *stack, int stacksize, char priority, int flags, thread_task_func_t function, void *arg, const char *name)
  {
      if (priority >= SCHED_PRIO_LEVELS) {
          return -EINVAL;
      }
  
  #ifdef DEVELHELP
      int total_stacksize = stacksize;
  #else
      (void) name;
  #endif
  
      /* align the stack on a 16/32bit boundary */
      uintptr_t misalignment = (uintptr_t) stack % ALIGN_OF(void *);
      if (misalignment) {
          misalignment = ALIGN_OF(void *) - misalignment;
          stack += misalignment;
          stacksize -= misalignment;
      }
  
      /* make room for the thread control block */
      stacksize -= sizeof(thread_t);
  
      /* round down the stacksize to a multiple of thread_t alignments (usually 16/32bit) */
      stacksize -= stacksize % ALIGN_OF(thread_t);
  
      if (stacksize < 0) {
          DEBUG("thread_create: stacksize is too small!\n");
      }
      /* allocate our thread control block at the top of our stackspace */
      thread_t *cb = (thread_t *) (stack + stacksize);
  
  #if defined(DEVELHELP) || defined(SCHED_TEST_STACK)
      if (flags & THREAD_CREATE_STACKTEST) {
          /* assign each int of the stack the value of it's address */
          uintptr_t *stackmax = (uintptr_t *) (stack + stacksize);
          uintptr_t *stackp = (uintptr_t *) stack;
  
          while (stackp < stackmax) {
              *stackp = (uintptr_t) stackp;
              stackp++;
          }
      }
      else {
          /* create stack guard */
          *(uintptr_t *) stack = (uintptr_t) stack;
      }
  #endif
  
      unsigned state = irq_disable();
  
      kernel_pid_t pid = KERNEL_PID_UNDEF;
      for (kernel_pid_t i = KERNEL_PID_FIRST; i <= KERNEL_PID_LAST; ++i) {
          if (sched_threads[i] == NULL) {
              pid = i;
              break;
          }
      }
      if (pid == KERNEL_PID_UNDEF) {
          DEBUG("thread_create(): too many threads!\n");
  
          irq_restore(state);
  
          return -EOVERFLOW;
      }
  
      sched_threads[pid] = cb;
  
      cb->pid = pid;
      cb->sp = thread_stack_init(function, arg, stack, stacksize);
  
  #if defined(DEVELHELP) || defined(SCHED_TEST_STACK) || defined(MODULE_MPU_STACK_GUARD)
      cb->stack_start = stack;
  #endif
  
  #ifdef DEVELHELP
      cb->stack_size = total_stacksize;
      cb->name = name;
  #endif
  
      cb->priority = priority;
      cb->status = 0;
  
      cb->rq_entry.next = NULL;
  
  #ifdef MODULE_CORE_MSG
      cb->wait_data = NULL;
      cb->msg_waiters.next = NULL;
      cib_init(&(cb->msg_queue), 0);
      cb->msg_array = NULL;
  #endif
  
      sched_num_threads++;
  
      DEBUG("Created thread %s. PID: %" PRIkernel_pid ". Priority: %u.\n", name, cb->pid, priority);
  
      if (flags & THREAD_CREATE_SLEEPING) {
          sched_set_status(cb, STATUS_SLEEPING);
      }
      else {
          sched_set_status(cb, STATUS_PENDING);
  
          if (!(flags & THREAD_CREATE_WOUT_YIELD)) {
              irq_restore(state);
              sched_switch(priority);
              return pid;
          }
      }
  
      irq_restore(state);
  
      return pid;
  }