fb11e647
vrobic
reseau statique a...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* Copyright (C) 2014 René Kijewski <rene.kijewski@fu-berlin.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @ingroup x86-irq
* @{
*
* @file
* @brief Reading and interrupt handling for the Real Time Clock (RTC).
*
* @author René Kijewski <rene.kijewski@fu-berlin.de>
*
* @}
*/
#include "x86_pic.h"
#include "x86_rtc.h"
#include "irq.h"
#include <stdio.h>
#define ENABLE_DEBUG (0)
#include "debug.h"
static bool valid;
static int32_t alarm_msg_content, periodic_msg_content, update_msg_content;
static kernel_pid_t alarm_pid = KERNEL_PID_UNDEF, periodic_pid = KERNEL_PID_UNDEF, update_pid = KERNEL_PID_UNDEF;
static void alarm_callback_default(uint8_t reg_c)
{
if (alarm_pid != KERNEL_PID_UNDEF) {
msg_t m;
m.type = reg_c | (RTC_REG_B_INT_ALARM << 8);
m.content.value = alarm_msg_content;
msg_send_int(&m, alarm_pid);
}
}
static void periodic_callback_default(uint8_t reg_c)
{
if (periodic_pid != KERNEL_PID_UNDEF) {
msg_t m;
m.type = reg_c | (RTC_REG_B_INT_PERIODIC << 8);
m.content.value = periodic_msg_content;
msg_send_int(&m, periodic_pid);
}
}
static void update_callback_default(uint8_t reg_c)
{
if (update_pid != KERNEL_PID_UNDEF) {
msg_t m;
m.type = reg_c | (RTC_REG_B_INT_UPDATE << 8);
m.content.value = update_msg_content;
msg_send_int(&m, update_pid);
}
}
static x86_rtc_callback_t alarm_callback = alarm_callback_default;
static x86_rtc_callback_t periodic_callback = periodic_callback_default;
static x86_rtc_callback_t update_callback = update_callback_default;
void x86_rtc_set_alarm_callback(x86_rtc_callback_t cb)
{
alarm_callback = cb ? cb : alarm_callback_default;
}
void x86_rtc_set_periodic_callback(x86_rtc_callback_t cb)
{
periodic_callback = cb ? cb : periodic_callback_default;
}
void x86_rtc_set_update_callback(x86_rtc_callback_t cb)
{
update_callback = cb ? cb : update_callback_default;
}
static void rtc_irq_handler(uint8_t irq_num)
{
(void) irq_num; /* == PIC_NUM_RTC */
uint8_t c = x86_cmos_read(RTC_REG_C);
DEBUG("RTC: c = 0x%02x, IRQ=%u, A=%u, P=%u, U=%u\n", c, (c & RTC_REG_C_IRQ) ? 1 : 0,
(c & RTC_REG_C_IRQ_ALARM) ? 1 : 0,
(c & RTC_REG_C_IRQ_PERIODIC) ? 1 : 0,
(c & RTC_REG_C_IRQ_UPDATE) ? 1 : 0);
if (!(c & RTC_REG_C_IRQ)) {
return;
}
if (c & RTC_REG_C_IRQ_ALARM) {
alarm_callback(c);
}
if (c & RTC_REG_C_IRQ_PERIODIC) {
periodic_callback(c);
}
if (c & RTC_REG_C_IRQ_UPDATE) {
update_callback(c);
}
}
void x86_init_rtc(void)
{
uint8_t d = x86_cmos_read(RTC_REG_D);
valid = (d & RTC_REG_D_VALID) != 0;
if (!valid) {
puts("Warning: RTC does not work.");
return;
}
x86_cmos_write(RTC_REG_B, x86_cmos_read(RTC_REG_B) & ~RTC_REG_B_INT_MASK);
rtc_irq_handler(0);
x86_pic_set_handler(PIC_NUM_RTC, &rtc_irq_handler);
x86_pic_enable_irq(PIC_NUM_RTC);
x86_rtc_data_t now;
x86_rtc_read(&now);
printf("RTC initialized [%02hhu:%02hhu:%02hhu, %04u-%02hhu-%02hhu]\n",
now.hour, now.minute, now.second,
now.century * 100 + now.year, now.month, now.day);
if (x86_cmos_read(RTC_REG_POST) & (RTC_REG_POST_POWER_LOSS | RTC_REG_POST_TIME_INVALID)) {
puts("Warning: RTC time is invalid (power loss?)");
}
}
static inline bool is_update_in_progress(void)
{
return (x86_cmos_read(RTC_REG_A) & RTC_REG_A_UPDATING) != 0;
}
static uint8_t bcd2binary(uint8_t datum)
{
return (datum / 16) * 10 + (datum % 16);
}
static uint8_t binary2bcd(uint8_t datum)
{
return (datum / 10) * 16 + (datum % 10);
}
bool x86_rtc_read(x86_rtc_data_t *dest)
{
if (!valid) {
return false;
}
unsigned old_status = irq_disable();
while (is_update_in_progress()) {
__asm__ volatile ("pause");
}
uint8_t b = x86_cmos_read(RTC_REG_B);
do {
dest->second = x86_cmos_read(RTC_REG_SECOND);
dest->minute = x86_cmos_read(RTC_REG_MINUTE);
dest->hour = x86_cmos_read(RTC_REG_HOUR);
dest->day = x86_cmos_read(RTC_REG_DAY);
dest->month = x86_cmos_read(RTC_REG_MONTH);
dest->year = x86_cmos_read(RTC_REG_YEAR);
dest->century = bcd2binary(x86_cmos_read(RTC_REG_CENTURY));
} while (dest->second != x86_cmos_read(RTC_REG_SECOND));
if (dest->century == 0) {
dest->century = 20; // safe guess
}
if (!(b & RTC_REG_B_BIN)) {
dest->second = bcd2binary(dest->second);
dest->minute = bcd2binary(dest->minute);
dest->hour = ((dest->hour & 0x0F) + (((dest->hour & 0x70) / 16) * 10)) | (dest->hour & 0x80);
dest->day = bcd2binary(dest->day);
dest->month = bcd2binary(dest->month);
dest->year = bcd2binary(dest->year);
}
if (!(b & RTC_REG_B_24H) && (dest->hour & 0x80)) {
dest->hour = ((dest->hour & 0x7F) + 12) % 24;
}
irq_restore(old_status);
return true;
}
bool x86_rtc_set_alarm(const x86_rtc_data_t *when, uint32_t msg_content, kernel_pid_t target_pid, bool allow_replace)
{
if (!valid) {
return false;
}
unsigned old_status = irq_disable();
bool result;
if (target_pid == KERNEL_PID_UNDEF) {
result = true;
alarm_pid = KERNEL_PID_UNDEF;
uint8_t b = x86_cmos_read(RTC_REG_B);
x86_cmos_write(RTC_REG_B, b & ~RTC_REG_B_INT_ALARM);
}
else {
result = allow_replace || alarm_pid == KERNEL_PID_UNDEF;
if (result) {
alarm_msg_content = msg_content;
alarm_pid = target_pid;
uint8_t b = x86_cmos_read(RTC_REG_B);
if (b & RTC_REG_B_BIN) {
x86_cmos_write(RTC_REG_ALARM_SECOND, when->second);
x86_cmos_write(RTC_REG_ALARM_MINUTE, when->minute);
x86_cmos_write(RTC_REG_ALARM_HOUR, when->hour);
}
else {
x86_cmos_write(RTC_REG_ALARM_SECOND, binary2bcd(when->second));
x86_cmos_write(RTC_REG_ALARM_MINUTE, binary2bcd(when->minute));
x86_cmos_write(RTC_REG_ALARM_HOUR, binary2bcd(when->hour));
}
x86_cmos_write(RTC_REG_B, b | RTC_REG_B_INT_ALARM);
}
}
rtc_irq_handler(0);
irq_restore(old_status);
return result;
}
bool x86_rtc_set_periodic(uint8_t hz, uint32_t msg_content, kernel_pid_t target_pid, bool allow_replace)
{
if (!valid) {
return false;
}
unsigned old_status = irq_disable();
bool result;
if (target_pid == KERNEL_PID_UNDEF || hz == RTC_REG_A_HZ_OFF) {
result = true;
periodic_pid = KERNEL_PID_UNDEF;
uint8_t old_divider = x86_cmos_read(RTC_REG_A) & ~RTC_REG_A_HZ_MASK;
x86_cmos_write(RTC_REG_A, old_divider | RTC_REG_A_HZ_OFF);
x86_cmos_write(RTC_REG_B, x86_cmos_read(RTC_REG_B) & ~RTC_REG_B_INT_PERIODIC);
}
else {
result = allow_replace || periodic_pid == KERNEL_PID_UNDEF;
if (result) {
periodic_msg_content = msg_content;
periodic_pid = target_pid;
uint8_t old_divider = x86_cmos_read(RTC_REG_A) & ~RTC_REG_A_HZ_MASK;
x86_cmos_write(RTC_REG_A, old_divider | hz);
x86_cmos_write(RTC_REG_B, x86_cmos_read(RTC_REG_B) | RTC_REG_B_INT_PERIODIC);
}
}
rtc_irq_handler(0);
irq_restore(old_status);
return result;
}
bool x86_rtc_set_update(uint32_t msg_content, kernel_pid_t target_pid, bool allow_replace)
{
if (!valid) {
return false;
}
unsigned old_status = irq_disable();
bool result;
if (target_pid == KERNEL_PID_UNDEF) {
result = true;
update_pid = KERNEL_PID_UNDEF;
x86_cmos_write(RTC_REG_B, x86_cmos_read(RTC_REG_B) & ~RTC_REG_B_INT_UPDATE);
}
else {
result = allow_replace || update_pid == KERNEL_PID_UNDEF;
if (result) {
update_msg_content = msg_content;
update_pid = target_pid;
x86_cmos_write(RTC_REG_B, x86_cmos_read(RTC_REG_B) | RTC_REG_B_INT_UPDATE);
}
}
rtc_irq_handler(0);
irq_restore(old_status);
return result;
}
|