fb11e647
vrobic
reseau statique a...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
/* ----------------------------------------------------------------------------
* ATMEL Microcontroller Software Support
* ----------------------------------------------------------------------------
* Copyright (c) 2008, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ----------------------------------------------------------------------------
*/
/**
* @file
*
* Implementation of the hamming code functions.
*
*/
/*----------------------------------------------------------------------------
* Headers
*----------------------------------------------------------------------------*/
#include <stdint.h>
#define ENABLE_DEBUG (0)
#include "debug.h"
#include "ecc/hamming256.h"
#include "bitarithm.h"
/*----------------------------------------------------------------------------
* Internal function
*----------------------------------------------------------------------------*/
/**
* @brief Counts and return the number of bits set to '1' in the given hamming code.
* @param code Hamming code.
*/
static uint8_t count_bits_in_code256(uint8_t *code)
{
return bitarithm_bits_set(code[0]) + bitarithm_bits_set(code[1]) + bitarithm_bits_set(code[2]);
}
/**
* @brief Calculates the 22-bit hamming code for a 256-bytes block of data.
* @param data Data buffer to calculate code for.
* @param code Pointer to a buffer where the code should be stored.
* @param padding Amount of zeroes to be appended to the data such that it sizes
* equals 256 bytes
*/
static void compute256(const uint8_t *data, uint8_t *code, uint8_t padding)
{
uint32_t i;
uint8_t columnSum = 0;
uint8_t evenLineCode = 0;
uint8_t oddLineCode = 0;
uint8_t evenColumnCode = 0;
uint8_t oddColumnCode = 0;
/*
* Xor all bytes together to get the column sum;
* At the same time, calculate the even and odd line codes
*/
for (i = 0; i < 256; i++) {
/* Allow non-multiples of 256 to be calculated by padding the data with zeroes */
uint8_t current = 0;
if (i < ((uint16_t)(256 - padding))) {
current = data[i];
}
columnSum ^= current;
/*
* If the xor sum of the byte is 0, then this byte has no incidence on
* the computed code; so check if the sum is 1.
*/
if ((bitarithm_bits_set(current) & 1) == 1) {
/*
* Parity groups are formed by forcing a particular index bit to 0
* (even) or 1 (odd).
* Example on one byte:
*
* bits (dec) 7 6 5 4 3 2 1 0
* (bin) 111 110 101 100 011 010 001 000
* '---'---'---'----------.
* |
* groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4 |
* P2' ooooooo eeeeeee ooooooo eeeeeee P2 |
* P1' ooo eee ooo eee ooo eee ooo eee P1 |
* |
* We can see that: |
* - P4 -> bit 2 of index is 0 --------------------'
* - P4' -> bit 2 of index is 1.
* - P2 -> bit 1 of index if 0.
* - etc...
* We deduce that a bit position has an impact on all even Px if
* the log2(x)nth bit of its index is 0
* ex: log2(4) = 2, bit2 of the index must be 0 (-> 0 1 2 3)
* and on all odd Px' if the log2(x)nth bit of its index is 1
* ex: log2(2) = 1, bit1 of the index must be 1 (-> 0 1 4 5)
*
* As such, we calculate all the possible Px and Px' values at the
* same time in two variables, evenLineCode and oddLineCode, such as
* evenLineCode bits: P128 P64 P32 P16 P8 P4 P2 P1
* oddLineCode bits: P128' P64' P32' P16' P8' P4' P2' P1'
*/
evenLineCode ^= (255 - i);
oddLineCode ^= i;
}
}
/*
* At this point, we have the line parities, and the column sum. First, We
* must caculate the parity group values on the column sum.
*/
for (i = 0; i < 8; i++) {
if (columnSum & 1) {
evenColumnCode ^= (7 - i);
oddColumnCode ^= i;
}
columnSum >>= 1;
}
/*
* Now, we must interleave the parity values, to obtain the following layout:
* Code[0] = Line1
* Code[1] = Line2
* Code[2] = Column
* Line = Px' Px P(x-1)- P(x-1) ...
* Column = P4' P4 P2' P2 P1' P1 PadBit PadBit
*/
code[0] = 0;
code[1] = 0;
code[2] = 0;
for (i = 0; i < 4; i++) {
code[0] <<= 2;
code[1] <<= 2;
code[2] <<= 2;
/* Line 1 */
if ((oddLineCode & 0x80) != 0) {
code[0] |= 2;
}
if ((evenLineCode & 0x80) != 0) {
code[0] |= 1;
}
/* Line 2 */
if ((oddLineCode & 0x08) != 0) {
code[1] |= 2;
}
if ((evenLineCode & 0x08) != 0) {
code[1] |= 1;
}
/* Column */
if ((oddColumnCode & 0x04) != 0) {
code[2] |= 2;
}
if ((evenColumnCode & 0x04) != 0) {
code[2] |= 1;
}
oddLineCode <<= 1;
evenLineCode <<= 1;
oddColumnCode <<= 1;
evenColumnCode <<= 1;
}
/* Invert codes (linux compatibility) */
code[0] = (~(uint32_t)code[0]);
code[1] = (~(uint32_t)code[1]);
code[2] = (~(uint32_t)code[2]);
DEBUG("Computed code = %02X %02X %02X\n\r",
code[0], code[1], code[2]);
}
/**
* @brief Verifies and corrects a 256-bytes block of data using the given 22-bits
* hamming code.
*
* @param data Data buffer to check.
* @param originalCode Hamming code to use for verifying the data.
* @param padding Amount of zeroes to be appended to the data such that it sizes
* equals 256 bytes
*
* @return 0 if there is no error, otherwise returns a HAMMING_ERROR code.
*/
uint8_t verify256( uint8_t *pucData, const uint8_t *pucOriginalCode, uint8_t padding )
{
/* Calculate new code */
uint8_t computedCode[3];
uint8_t correctionCode[3];
compute256( pucData, computedCode, padding);
/* Xor both codes together */
correctionCode[0] = computedCode[0] ^ pucOriginalCode[0];
correctionCode[1] = computedCode[1] ^ pucOriginalCode[1];
correctionCode[2] = computedCode[2] ^ pucOriginalCode[2];
DEBUG( "Correction code = %02X %02X %02X\n\r", correctionCode[0], correctionCode[1], correctionCode[2] );
/* If all bytes are 0, there is no error */
if ((correctionCode[0] == 0) && (correctionCode[1] == 0) && (correctionCode[2] == 0)) {
return 0;
}
/* If there is a single bit error, there are 11 bits set to 1 */
if (count_bits_in_code256( correctionCode ) == 11) {
/* Get byte and bit indexes */
uint8_t byte;
uint8_t bit;
byte = correctionCode[0] & 0x80;
byte |= (correctionCode[0] << 1) & 0x40;
byte |= (correctionCode[0] << 2) & 0x20;
byte |= (correctionCode[0] << 3) & 0x10;
byte |= (correctionCode[1] >> 4) & 0x08;
byte |= (correctionCode[1] >> 3) & 0x04;
byte |= (correctionCode[1] >> 2) & 0x02;
byte |= (correctionCode[1] >> 1) & 0x01;
bit = (correctionCode[2] >> 5) & 0x04;
bit |= (correctionCode[2] >> 4) & 0x02;
bit |= (correctionCode[2] >> 3) & 0x01;
/* Correct bit */
DEBUG("Correcting byte #%d at bit %d\n\r", byte, bit );
pucData[byte] ^= (1 << bit);
return Hamming_ERROR_SINGLEBIT;
}
/* Check if ECC has been corrupted */
if (count_bits_in_code256( correctionCode ) == 1) {
return Hamming_ERROR_ECC;
}
/* Otherwise, this is a multi-bit error */
else {
return Hamming_ERROR_MULTIPLEBITS;
}
}
/*----------------------------------------------------------------------------
* Exported functions
*----------------------------------------------------------------------------*/
void hamming_compute256x( const uint8_t *pucData, uint32_t dwSize, uint8_t *puCode )
{
DEBUG("hamming_compute256x()\n\r");
while (dwSize > 0) {
uint8_t padding = 0;
if (dwSize < 256) {
padding = 256 - dwSize;
}
compute256( pucData, puCode, padding );
pucData += 256;
puCode += 3;
dwSize -= (256 - padding);
}
}
uint8_t hamming_verify256x( uint8_t *pucData, uint32_t dwSize, const uint8_t *pucCode )
{
uint8_t result = 0;
DEBUG( "hamming_verify256x()\n\r" );
while (dwSize > 0) {
uint8_t error, padding = 0;
if (dwSize < 256) {
padding = 256 - dwSize;
}
error = verify256( pucData, pucCode, padding );
if (error == Hamming_ERROR_SINGLEBIT) {
result = Hamming_ERROR_SINGLEBIT;
}
else {
if (error) {
return error;
}
}
pucData += 256;
pucCode += 3;
dwSize -= (256 - padding);
}
return result;
}
|