Blame view

RIOT/cpu/stm32f2/periph/adc.c 3.09 KB
fb11e647   vrobic   reseau statique a...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  /*
   * Copyright (C) 2016 Engineering-Spirit
   *
   * This file is subject to the terms and conditions of the GNU Lesser General
   * Public License v2.1. See the file LICENSE in the top level directory for more
   * details.
   */
  
  /**
   * @ingroup     cpu_stm32f2
   * @{
   *
   * @file
   * @brief       Low-level ADC driver implementation
   *
   * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
   * @author      Nick v. IJzendoorn <nijzendoorn@engineering-spirit.nl>
   *
   * @}
   */
  
  #include "cpu.h"
  #include "mutex.h"
  #include "periph/adc.h"
  #include "periph_conf.h"
  
  /**
   * @brief   Maximum allowed ADC clock speed
   */
  #define MAX_ADC_SPEED           (12000000U)
  
  /**
   * @brief   Load the ADC configuration
   * @{
   */
  #ifdef ADC_CONFIG
  static const adc_conf_t adc_config[] = ADC_CONFIG;
  #else
  static const adc_conf_t adc_config[] = {};
  #endif
  
  /**
   * @brief   Allocate locks for all three available ADC devices
   */
  static mutex_t locks[] = {
  #if ADC_DEVS > 1
      MUTEX_INIT,
  #endif
  #if ADC_DEVS > 2
      MUTEX_INIT,
  #endif
      MUTEX_INIT
  };
  
  static inline ADC_TypeDef *dev(adc_t line)
  {
      return (ADC_TypeDef *)(ADC1_BASE + (adc_config[line].dev << 8));
  }
  
  static inline void prep(adc_t line)
  {
      mutex_lock(&locks[adc_config[line].dev]);
      periph_clk_en(APB2, (RCC_APB2ENR_ADC1EN << adc_config[line].dev));
  }
  
  static inline void done(adc_t line)
  {
      periph_clk_dis(APB2, (RCC_APB2ENR_ADC1EN << adc_config[line].dev));
      mutex_unlock(&locks[adc_config[line].dev]);
  }
  
  int adc_init(adc_t line)
  {
      uint32_t clk_div = 2;
  
      /* check if the line is valid */
      if (line >= ADC_NUMOF) {
          return -1;
      }
  
      /* lock and power-on the device */
      prep(line);
  
      /* configure the pin */
      gpio_init_analog(adc_config[line].pin);
      /* set clock prescaler to get the maximal possible ADC clock value */
      for (clk_div = 2; clk_div < 8; clk_div += 2) {
          if ((CLOCK_CORECLOCK / clk_div) <= MAX_ADC_SPEED) {
              break;
          }
      }
      ADC->CCR = ((clk_div / 2) - 1) << 16;
  
      /* enable the ADC module */
      dev(line)->CR2 = ADC_CR2_ADON;
  
      /* check if this channel is an internal ADC channel, if so
       * enable the internal temperature and Vref */
      if (adc_config[line].chan == 16 || adc_config[line].chan == 17) {
          /* check if the internal channels are configured to use ADC1 */
          if (dev(line) != ADC1) {
              return -3;
          }
  
          ADC->CCR |= ADC_CCR_TSVREFE;
      }
  
      /* free the device again */
      done(line);
      return 0;
  }
  
  int adc_sample(adc_t line, adc_res_t res)
  {
      int sample;
  
      /* check if resolution is applicable */
      if (res < 0xff) {
          return -1;
      }
  
      /* lock and power on the ADC device  */
      prep(line);
  
      /* set resolution and conversion channel */
      dev(line)->CR1 = res;
      dev(line)->SQR3 = adc_config[line].chan;
      /* start conversion and wait for results */
      dev(line)->CR2 |= ADC_CR2_SWSTART;
      while (!(dev(line)->SR & ADC_SR_EOC)) {}
      /* finally read sample and reset the STRT bit in the status register */
      sample = (int)dev(line)->DR;
  
      /* power off and unlock device again */
      done(line);
  
      return sample;
  }