Blame view

RIOT/cpu/nrf5x_common/periph/uart.c 5.41 KB
fb11e647   vrobic   reseau statique a...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
  /*
   * Copyright (C) 2014-2016 Freie Universität Berlin
   *               2015 Jan Wagner <mail@jwagner.eu>
   *
   *
   * This file is subject to the terms and conditions of the GNU Lesser
   * General Public License v2.1. See the file LICENSE in the top level
   * directory for more details.
   */
  
  /**
   * @ingroup     cpu_nrf5x_common
   * @{
   *
   * @file
   * @brief       Implementation of the peripheral UART interface
   *
   * @author      Christian Kühling <kuehling@zedat.fu-berlin.de>
   * @author      Timo Ziegler <timo.ziegler@fu-berlin.de>
   * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
   * @author      Jan Wagner <mail@jwagner.eu>
   *
   * @}
   */
  
  #include <stdint.h>
  
  #include "cpu.h"
  #include "periph/uart.h"
  #include "periph_cpu.h"
  #include "periph_conf.h"
  
  
  /**
   * @brief Allocate memory for the interrupt context
   */
  static uart_isr_ctx_t uart_config;
  
  int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
  {
      if (uart != 0) {
          return UART_NODEV;
      }
  
      /* remember callback addresses and argument */
      uart_config.rx_cb = rx_cb;
      uart_config.arg = arg;
  
  #ifdef CPU_FAM_NRF51
     /* power on the UART device */
      NRF_UART0->POWER = 1;
  #endif
      /* reset configuration registers */
      NRF_UART0->CONFIG = 0;
      /* configure RX/TX pin modes */
      GPIO_BASE->DIRSET = (1 << UART_PIN_TX);
      GPIO_BASE->DIRCLR = (1 << UART_PIN_RX);
      /* configure UART pins to use */
      NRF_UART0->PSELTXD = UART_PIN_TX;
      NRF_UART0->PSELRXD = UART_PIN_RX;
      /* enable HW-flow control if defined */
  #if UART_HWFLOWCTRL
      /* set pin mode for RTS and CTS pins */
      GPIO_BASE->DIRSET = (1 << UART_PIN_RTS);
      GPIO_BASE->DIRCLR = (1 << UART_PIN_CTS);
      /* configure RTS and CTS pins to use */
      NRF_UART0->PSELRTS = UART_PIN_RTS;
      NRF_UART0->PSELCTS = UART_PIN_CTS;
      NRF_UART0->CONFIG |= UART_CONFIG_HWFC_Msk;  /* enable HW flow control */
  #else
      NRF_UART0->PSELRTS = 0xffffffff;            /* pin disconnected */
      NRF_UART0->PSELCTS = 0xffffffff;            /* pin disconnected */
  #endif
  
      /* select baudrate */
      switch (baudrate) {
          case 1200:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
              break;
          case 2400:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400;
              break;
          case 4800:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800;
              break;
          case 9600:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600;
              break;
          case 14400:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400;
              break;
          case 19200:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200;
              break;
          case 28800:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800;
              break;
          case 38400:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400;
              break;
          case 57600:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600;
              break;
          case 76800:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800;
              break;
          case 115200:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200;
              break;
          case 230400:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400;
              break;
          case 250000:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000;
              break;
          case 460800:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800;
              break;
          case 921600:
              NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600;
              break;
          default:
              return UART_NOBAUD;
      }
  
      /* enable the UART device */
      NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled;
      /* enable TX and RX */
      NRF_UART0->TASKS_STARTTX = 1;
      NRF_UART0->TASKS_STARTRX = 1;
      /* enable global and receiving interrupt */
      NVIC_EnableIRQ(UART_IRQN);
      NRF_UART0->INTENSET = UART_INTENSET_RXDRDY_Msk;
      return UART_OK;
  }
  
  void uart_write(uart_t uart, const uint8_t *data, size_t len)
  {
      if (uart == 0) {
          for (size_t i = 0; i < len; i++) {
              /* This section of the function is not thread safe:
                  - another thread may mess up with the uart at the same time.
                 In order to avoid an infinite loop in the interrupted thread,
                 the TXRDY flag must be cleared before writing the data to be
                 sent and not after. This way, the higher priority thread will
                 exit this function with the TXRDY flag set, then the interrupted
                 thread may have not transmitted his data but will still exit the
                 while loop.
              */
  
              /* reset ready flag */
              NRF_UART0->EVENTS_TXDRDY = 0;
              /* write data into transmit register */
              NRF_UART0->TXD = data[i];
              /* wait for any transmission to be done */
              while (NRF_UART0->EVENTS_TXDRDY == 0) {}
          }
      }
  }
  
  void uart_poweron(uart_t uart)
  {
      (void)uart;
      NRF_UART0->TASKS_STARTRX = 1;
      NRF_UART0->TASKS_STARTTX = 1;
  }
  
  void uart_poweroff(uart_t uart)
  {
      (void)uart;
      NRF_UART0->TASKS_SUSPEND;
  }
  
  void isr_uart0(void)
  {
      if (NRF_UART0->EVENTS_RXDRDY == 1) {
          NRF_UART0->EVENTS_RXDRDY = 0;
          uint8_t byte = (uint8_t)(NRF_UART0->RXD & 0xff);
          uart_config.rx_cb(uart_config.arg, byte);
      }
      cortexm_isr_end();
  }