Blame view

Python/Application/Threshold.py 2.16 KB
81de032f   Justine   Ajout de l'applic...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  import cv2
  import numpy as np
  from matplotlib import pyplot as plt
  
  def ThresholdEverything(img):
  	ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
  	th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
  	th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
  	titles = ['Original Image', 'Global Thresholding (v = 127)',
  	'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
  	images = [img, th1, th2, th3]
  	for i in xrange(4):
  		plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
  		plt.title(titles[i])
  		plt.xticks([]),plt.yticks([])
  	plt.show()
  	return images
  
  def GlobalThresholding(img):
  	ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
  	plt.plot(), plt.imshow(th1, 'gray')
  	plt.title('Global Thresholding (v = 127)')
  	plt.show()
  	return th1
  
  def AdaptiveMeanThresholding(img):
  	th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
  	plt.plot(), plt.imshow(th2, 'gray')
  	plt.title('Adaptive Mean Thresholding')
  	plt.show()
  	return th2
  
  def AdaptiveGaussianThresholding(img):
  	th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
  	plt.plot(), plt.imshow(th3, 'gray')
  	plt.title('Adaptive Gaussian Thresholding')
  	plt.show()
  	return th3
  
  def ThresholdChoiceProcessing(img, choice):
  	if choice == '1':
  		img = GlobalThresholding(img)
  		return img
  	elif choice == '2':
  		img = AdaptiveMeanThresholding(img)
  		return img
  	elif choice == '3':
  		img = AdaptiveGaussianThresholding(img)
  		return img
  	elif choice == '4':
  		img = ThresholdEverything(img)
  		return img
  	else:
  		return
  
  
  def ThresholdChoice() :
  	image = None
  	print('\t\tThreshold Menu\n')
  	while (image is None):
  		image = str(raw_input('\tImage to use? By default couleur.png \n'))
  		if not image:
  			image = 'couleur.png'
  		image = cv2.imread(str(image), 0)
  	img = cv2.medianBlur(image,5)
  	print ('\t1. Global Thresholding\n\t2. Adaptive Mean Thresholding\n\t3. Adaptive Gaussian Thresholding\n\t4. Everything\n')
  	choice = raw_input('\n\tMultiple choices possible\n')
  	for i in range (0, len(choice)):
  		img = image.copy()
  		img = ThresholdChoiceProcessing(img, choice[i])
  	return