8ec98c9f
Guillaume
MAJ
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
<?php
/*=======================================================================
// File: JPGRAPH_PIE3D.PHP
// Description: 3D Pie plot extension for JpGraph
// Created: 2001-03-24
// Ver: $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $
//
// Copyright (c) Asial Corporation. All rights reserved.
//========================================================================
*/
//===================================================
// CLASS PiePlot3D
// Description: Plots a 3D pie with a specified projection
// angle between 20 and 70 degrees.
//===================================================
class PiePlot3D extends PiePlot {
private $labelhintcolor="red",$showlabelhint=true;
private $angle=50;
private $edgecolor="", $edgeweight=1;
private $iThickness=false;
//---------------
// CONSTRUCTOR
function __construct($data) {
$this->radius = 0.5;
$this->data = $data;
$this->title = new Text("");
$this->title->SetFont(FF_FONT1,FS_BOLD);
$this->value = new DisplayValue();
$this->value->Show();
$this->value->SetFormat('%.0f%%');
}
//---------------
// PUBLIC METHODS
// Set label arrays
function SetLegends($aLegend) {
$this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
}
function SetSliceColors($aColors) {
$this->setslicecolors = $aColors;
}
function Legend($aGraph) {
parent::Legend($aGraph);
$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
}
function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') {
$this->csimtargets = $aTargets;
$this->csimwintargets = $aWinTargets;
$this->csimalts = $aAlts;
}
// Should the slices be separated by a line? If color is specified as "" no line
// will be used to separate pie slices.
function SetEdge($aColor='black',$aWeight=1) {
$this->edgecolor = $aColor;
$this->edgeweight = $aWeight;
}
// Specify projection angle for 3D in degrees
// Must be between 20 and 70 degrees
function SetAngle($a) {
if( $a<5 || $a>90 ) {
JpGraphError::RaiseL(14002);
//("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
}
else {
$this->angle = $a;
}
}
function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
$sa *= M_PI/180;
$ea *= M_PI/180;
//add coordinates of the centre to the map
$coords = "$xc, $yc";
//add coordinates of the first point on the arc to the map
$xp = floor($width*cos($sa)/2+$xc);
$yp = floor($yc-$height*sin($sa)/2);
$coords.= ", $xp, $yp";
//If on the front half, add the thickness offset
if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
$yp = floor($yp+$thick);
$coords.= ", $xp, $yp";
}
//add coordinates every 0.2 radians
$a=$sa+0.2;
while ($a<$ea) {
$xp = floor($width*cos($a)/2+$xc);
if ($a >= M_PI && $a <= 2*M_PI*1.01) {
$yp = floor($yc-($height*sin($a)/2)+$thick);
} else {
$yp = floor($yc-$height*sin($a)/2);
}
$coords.= ", $xp, $yp";
$a += 0.2;
}
//Add the last point on the arc
$xp = floor($width*cos($ea)/2+$xc);
$yp = floor($yc-$height*sin($ea)/2);
if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
$coords.= ", $xp, ".floor($yp+$thick);
}
$coords.= ", $xp, $yp";
$alt='';
if( !empty($this->csimtargets[$i]) ) {
$this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\"";
if( !empty($this->csimwintargets[$i]) ) {
$this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" ";
}
if( !empty($this->csimalts[$i]) ) {
$tmp=sprintf($this->csimalts[$i],$this->data[$i]);
$this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" ";
}
$this->csimareas .= " />\n";
}
}
function SetLabels($aLabels,$aLblPosAdj="auto") {
$this->labels = $aLabels;
$this->ilabelposadj=$aLblPosAdj;
}
// Distance from the pie to the labels
function SetLabelMargin($m) {
$this->value->SetMargin($m);
}
// Show a thin line from the pie to the label for a specific slice
function ShowLabelHint($f=true) {
$this->showlabelhint=$f;
}
// Set color of hint line to label for each slice
function SetLabelHintColor($c) {
$this->labelhintcolor=$c;
}
function SetHeight($aHeight) {
$this->iThickness = $aHeight;
}
// Normalize Angle between 0-360
function NormAngle($a) {
// Normalize anle to 0 to 2M_PI
//
if( $a > 0 ) {
while($a > 360) $a -= 360;
}
else {
while($a < 0) $a += 360;
}
if( $a < 0 )
$a = 360 + $a;
if( $a == 360 ) $a=0;
return $a;
}
// Draw one 3D pie slice at position ($xc,$yc) with height $z
function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
// Due to the way the 3D Pie algorithm works we are
// guaranteed that any slice we get into this method
// belongs to either the left or right side of the
// pie ellipse. Hence, no slice will cross 90 or 270
// point.
if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
exit(1);
}
$p[] = array();
// Setup pre-calculated values
$rsa = $sa/180*M_PI; // to Rad
$rea = $ea/180*M_PI; // to Rad
$sinsa = sin($rsa);
$cossa = cos($rsa);
$sinea = sin($rea);
$cosea = cos($rea);
// p[] is the points for the overall slice and
// pt[] is the points for the top pie
// Angular step when approximating the arc with a polygon train.
$step = 0.05;
if( $sa >= 270 ) {
if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
if( $ea > 0 && $ea <= 90 ) {
// Adjust angle to simplify conditions in loops
$rea += 2*M_PI;
}
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w;
$pt[] = $yc;
$p[] = $xc+$w;
$p[] = $z+$yc;
$p[] = $xc+$w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
}
else {
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
$rea = $rea == 0.0 ? 2*M_PI : $rea;
for( $a=$rsa; $a < $rea; $a += $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc+$w*$cosea;
$p[] = $z+$yc-$h*$sinea;
$p[] = $xc+$w*$cosea;
$p[] = $yc-$h*$sinea;
$p[] = $xc;
$p[] = $yc;
}
}
elseif( $sa >= 180 ) {
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a>$rsa; $a -= $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc+$w*$cossa;
$p[] = $z+$yc-$h*$sinsa;
$p[] = $xc+$w*$cossa;
$p[] = $yc-$h*$sinsa;
$p[] = $xc;
$p[] = $yc;
}
elseif( $sa >= 90 ) {
if( $ea > 180 ) {
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a > M_PI; $a -= $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z + $yc - $h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$p[] = $xc-$w;
$p[] = $z+$yc;
$p[] = $xc-$w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
$pt[] = $xc-$w;
$pt[] = $z+$yc;
$pt[] = $xc-$w;
$pt[] = $yc;
for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
else { // $sa >= 90 && $ea <= 180
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cosea,$z+$yc-$h*$sinea,
$xc+$w*$cosea,$yc-$h*$sinea,
$xc,$yc);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a>$rsa; $a -= $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
}
else { // sa > 0 && ea < 90
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa,
$xc+$w*$cossa,$yc-$h*$sinsa,
$xc,$yc);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
for( $a=$rsa; $a < $rea; $a += $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
}
$img->PushColor($fillcolor.":".$shadow);
$img->FilledPolygon($p);
$img->PopColor();
$img->PushColor($fillcolor);
$img->FilledPolygon($pt);
$img->PopColor();
}
function SetStartAngle($aStart) {
if( $aStart < 0 || $aStart > 360 ) {
JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
}
$this->startangle = $aStart;
}
// Draw a 3D Pie
function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
$shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
//---------------------------------------------------------------------------
// As usual the algorithm get more complicated than I originally
// envisioned. I believe that this is as simple as it is possible
// to do it with the features I want. It's a good exercise to start
// thinking on how to do this to convince your self that all this
// is really needed for the general case.
//
// The algorithm two draw 3D pies without "real 3D" is done in
// two steps.
// First imagine the pie cut in half through a thought line between
// 12'a clock and 6'a clock. It now easy to imagine that we can plot
// the individual slices for each half by starting with the topmost
// pie slice and continue down to 6'a clock.
//
// In the algortithm this is done in three principal steps
// Step 1. Do the knife cut to ensure by splitting slices that extends
// over the cut line. This is done by splitting the original slices into
// upto 3 subslices.
// Step 2. Find the top slice for each half
// Step 3. Draw the slices from top to bottom
//
// The thing that slightly complicates this scheme with all the
// angle comparisons below is that we can have an arbitrary start
// angle so we must take into account the different equivalence classes.
// For the same reason we must walk through the angle array in a
// modulo fashion.
//
// Limitations of algorithm:
// * A small exploded slice which crosses the 270 degree point
// will get slightly nagged close to the center due to the fact that
// we print the slices in Z-order and that the slice left part
// get printed first and might get slightly nagged by a larger
// slice on the right side just before the right part of the small
// slice. Not a major problem though.
//---------------------------------------------------------------------------
// Determine the height of the ellippse which gives an
// indication of the inclination angle
$h = ($angle/90.0)*$d;
$sum = 0;
for($i=0; $i<count($data); ++$i ) {
$sum += $data[$i];
}
// Special optimization
if( $sum==0 ) return;
if( $this->labeltype == 2 ) {
$this->adjusted_data = $this->AdjPercentage($data);
}
// Setup the start
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
//
// Step 1 . Split all slices that crosses 90 or 270
//
$idx=0;
$adjexplode=array();
$numcolors = count($colors);
for($i=0; $i<count($data); ++$i, ++$idx ) {
$da = $data[$i]/$sum * 360;
if( empty($this->explode_radius[$i]) ) {
$this->explode_radius[$i]=0;
}
$expscale=1;
if( $aaoption == 1 ) {
$expscale=2;
}
$la = $a + $da/2;
$explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
$yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
$adjexplode[$idx] = $explode;
$labeldata[$i] = array($la,$explode[0],$explode[1]);
$originalangles[$i] = array($a,$a+$da);
$ne = $this->NormAngle($a+$da);
if( $da <= 180 ) {
// If the slice size is <= 90 it can at maximum cut across
// one boundary (either 90 or 270) where it needs to be split
$split=-1; // no split
if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
(($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
$split = 90;
}
elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
(($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
$split = 270;
}
if( $split > 0 ) { // split in two
$angles[$idx] = array($a,$split);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
$angles[++$idx] = array($split,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
else { // no split
$angles[$idx] = array($a,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
}
else {
// da>180
// Slice may, depending on position, cross one or two
// bonudaries
if( $a < 90 ) $split = 90;
elseif( $a <= 270 ) $split = 270;
else $split = 90;
$angles[$idx] = array($a,$split);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
//if( $a+$da > 360-$split ) {
// For slices larger than 270 degrees we might cross
// another boundary as well. This means that we must
// split the slice further. The comparison gets a little
// bit complicated since we must take into accound that
// a pie might have a startangle >0 and hence a slice might
// wrap around the 0 angle.
// Three cases:
// a) Slice starts before 90 and hence gets a split=90, but
// we must also check if we need to split at 270
// b) Slice starts after 90 but before 270 and slices
// crosses 90 (after a wrap around of 0)
// c) If start is > 270 (hence the firstr split is at 90)
// and the slice is so large that it goes all the way
// around 270.
if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) {
$angles[++$idx] = array($split,360-$split);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
$angles[++$idx] = array(360-$split,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
else {
// Just a simple split to the previous decided
// angle.
$angles[++$idx] = array($split,$ne);
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
}
$a += $da;
$a = $this->NormAngle($a);
}
// Total number of slices
$n = count($angles);
for($i=0; $i<$n; ++$i) {
list($dbgs,$dbge) = $angles[$i];
}
//
// Step 2. Find start index (first pie that starts in upper left quadrant)
//
$minval = $angles[0][0];
$min = 0;
for( $i=0; $i<$n; ++$i ) {
if( $angles[$i][0] < $minval ) {
$minval = $angles[$i][0];
$min = $i;
}
}
$j = $min;
$cnt = 0;
while( $angles[$j][1] <= 90 ) {
$j++;
if( $j>=$n) {
$j=0;
}
if( $cnt > $n ) {
JpGraphError::RaiseL(14005);
//("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
}
++$cnt;
}
$start = $j;
//
// Step 3. Print slices in z-order
//
$cnt = 0;
// First stroke all the slices between 90 and 270 (left half circle)
// counterclockwise
while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
list($x,$y) = $adjexplode[$j];
$this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
$z,$adjcolors[$j],$shadow);
$last = array($x,$y,$j);
$j++;
if( $j >= $n ) $j=0;
if( $cnt > $n ) {
JpGraphError::RaiseL(14006);
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
}
++$cnt;
}
$slice_left = $n-$cnt;
$j=$start-1;
if($j<0) $j=$n-1;
$cnt = 0;
// The stroke all slices from 90 to -90 (right half circle)
// clockwise
while( $cnt < $slice_left && $aaoption !== 2 ) {
list($x,$y) = $adjexplode[$j];
$this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
$z,$adjcolors[$j],$shadow);
$j--;
if( $cnt > $n ) {
JpGraphError::RaiseL(14006);
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
}
if($j<0) $j=$n-1;
$cnt++;
}
// Now do a special thing. Stroke the last slice on the left
// halfcircle one more time. This is needed in the case where
// the slice close to 270 have been exploded. In that case the
// part of the slice close to the center of the pie might be
// slightly nagged.
if( $aaoption !== 2 )
$this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
$angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
if( $aaoption !== 1 ) {
// Now print possible labels and add csim
$this->value->ApplyFont($img);
$margin = $img->GetFontHeight()/2 + $this->value->margin ;
for($i=0; $i < count($data); ++$i ) {
$la = $labeldata[$i][0];
$x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
$y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
if( $this->ilabelposadj >= 1.0 ) {
if( $la > 180 && $la < 360 ) $y += $z;
}
if( $this->labeltype == 0 ) {
if( $sum > 0 ) $l = 100*$data[$i]/$sum;
else $l = 0;
}
elseif( $this->labeltype == 1 ) {
$l = $data[$i];
}
else {
$l = $this->adjusted_data[$i];
}
if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) {
$l=sprintf($this->labels[$i],$l);
}
$this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
$this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
$originalangles[$i][0],$originalangles[$i][1]);
}
}
//
// Finally add potential lines in pie
//
if( $edgecolor=="" || $aaoption !== 0 ) return;
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
$a *= M_PI/180.0;
$idx=0;
$img->PushColor($edgecolor);
$img->SetLineWeight($edgeweight);
$fulledge = true;
for($i=0; $i < count($data) && $fulledge; ++$i ) {
if( empty($this->explode_radius[$i]) ) {
$this->explode_radius[$i]=0;
}
if( $this->explode_radius[$i] > 0 ) {
$fulledge = false;
}
}
for($i=0; $i < count($data); ++$i, ++$idx ) {
$da = $data[$i]/$sum * 2*M_PI;
$this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
$this->explode_radius[$i],$fulledge);
$a += $da;
}
$img->PopColor();
}
function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
$step = 0.02;
if( $exploderadius > 0 ) {
$la = ($sa+$ea)/2;
$xc += $exploderadius*cos($la);
$yc -= $exploderadius*sin($la) * ($h/$w) ;
}
$p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
for($a=$sa; $a < $ea; $a += $step ) {
$p[] = $xc + $w*cos($a);
$p[] = $yc - $h*sin($a);
}
$p[] = $xc+$w*cos($ea);
$p[] = $yc-$h*sin($ea);
$p[] = $xc;
$p[] = $yc;
$img->SetColor($edgecolor);
$img->Polygon($p);
// Unfortunately we can't really draw the full edge around the whole of
// of the slice if any of the slices are exploded. The reason is that
// this algorithm is to simply. There are cases where the edges will
// "overwrite" other slices when they have been exploded.
// Doing the full, proper 3D hidden lines stiff is actually quite
// tricky. So for exploded pies we only draw the top edge. Not perfect
// but the "real" solution is much more complicated.
if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
if($sa < M_PI && $ea > M_PI) {
$sa = M_PI;
}
if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) {
$ea = 2*M_PI;
}
if( $sa >= M_PI && $ea <= 2*M_PI ) {
$p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
$xc + $w*cos($sa),$z + $yc - $h*sin($sa));
for($a=$sa+$step; $a < $ea; $a += $step ) {
$p[] = $xc + $w*cos($a);
$p[] = $z + $yc - $h*sin($a);
}
$p[] = $xc + $w*cos($ea);
$p[] = $z + $yc - $h*sin($ea);
$p[] = $xc + $w*cos($ea);
$p[] = $yc - $h*sin($ea);
$img->SetColor($edgecolor);
$img->Polygon($p);
}
}
}
function Stroke($img,$aaoption=0) {
$n = count($this->data);
// If user hasn't set the colors use the theme array
if( $this->setslicecolors==null ) {
$colors = array_keys($img->rgb->rgb_table);
sort($colors);
$idx_a=$this->themearr[$this->theme];
$ca = array();
$m = count($idx_a);
for($i=0; $i < $m; ++$i) {
$ca[$i] = $colors[$idx_a[$i]];
}
$ca = array_reverse(array_slice($ca,0,$n));
}
else {
$ca = $this->setslicecolors;
}
if( $this->posx <= 1 && $this->posx > 0 ) {
$xc = round($this->posx*$img->width);
}
else {
$xc = $this->posx ;
}
if( $this->posy <= 1 && $this->posy > 0 ) {
$yc = round($this->posy*$img->height);
}
else {
$yc = $this->posy ;
}
if( $this->radius <= 1 ) {
$width = floor($this->radius*min($img->width,$img->height));
// Make sure that the pie doesn't overflow the image border
// The 0.9 factor is simply an extra margin to leave some space
// between the pie an the border of the image.
$width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
}
else {
$width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
}
// Add a sanity check for width
if( $width < 1 ) {
JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
}
// Establish a thickness. By default the thickness is a fifth of the
// pie slice width (=pie radius) but since the perspective depends
// on the inclination angle we use some heuristics to make the edge
// slightly thicker the less the angle.
// Has user specified an absolute thickness? In that case use
// that instead
if( $this->iThickness ) {
$thick = $this->iThickness;
$thick *= ($aaoption === 1 ? 2 : 1 );
}
else {
$thick = $width/12;
}
$a = $this->angle;
if( $a <= 30 ) $thick *= 1.6;
elseif( $a <= 40 ) $thick *= 1.4;
elseif( $a <= 50 ) $thick *= 1.2;
elseif( $a <= 60 ) $thick *= 1.0;
elseif( $a <= 70 ) $thick *= 0.8;
elseif( $a <= 80 ) $thick *= 0.7;
else $thick *= 0.6;
$thick = floor($thick);
if( $this->explode_all ) {
for($i=0; $i < $n; ++$i)
$this->explode_radius[$i]=$this->explode_r;
}
$this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
$thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
// Adjust title position
if( $aaoption != 1 ) {
$this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
$this->title->Stroke($img);
}
}
//---------------
// PRIVATE METHODS
// Position the labels of each slice
function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
$this->value->halign="left";
$this->value->valign="top";
// Position the axis title.
// dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
// that intersects with the extension of the corresponding axis. The code looks a little
// bit messy but this is really the only way of having a reasonable position of the
// axis titles.
$this->value->ApplyFont($img);
$h=$img->GetTextHeight($label);
// For numeric values the format of the display value
// must be taken into account
if( is_numeric($label) ) {
if( $label >= 0 ) {
$w=$img->GetTextWidth(sprintf($this->value->format,$label));
}
else {
$w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
}
}
else {
$w=$img->GetTextWidth($label);
}
while( $a > 2*M_PI ) {
$a -= 2*M_PI;
}
if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
$x = round($xp-$dx*$w);
$y = round($yp-$dy*$h);
// Mark anchor point for debugging
/*
$img->SetColor('red');
$img->Line($xp-10,$yp,$xp+10,$yp);
$img->Line($xp,$yp-10,$xp,$yp+10);
*/
$oldmargin = $this->value->margin;
$this->value->margin=0;
$this->value->Stroke($img,$label,$x,$y);
$this->value->margin=$oldmargin;
}
} // Class
/* EOF */
?>
|