Blame view

Hardware/Bootloaders/CDC/BootloaderCDC.c 20.4 KB
ca85a266   gperson   le vrai commit, c...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
  /*
               LUFA Library
       Copyright (C) Dean Camera, 2017.
  
    dean [at] fourwalledcubicle [dot] com
             www.lufa-lib.org
  */
  
  /*
    Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)
  
    Permission to use, copy, modify, distribute, and sell this
    software and its documentation for any purpose is hereby granted
    without fee, provided that the above copyright notice appear in
    all copies and that both that the copyright notice and this
    permission notice and warranty disclaimer appear in supporting
    documentation, and that the name of the author not be used in
    advertising or publicity pertaining to distribution of the
    software without specific, written prior permission.
  
    The author disclaims all warranties with regard to this
    software, including all implied warranties of merchantability
    and fitness.  In no event shall the author be liable for any
    special, indirect or consequential damages or any damages
    whatsoever resulting from loss of use, data or profits, whether
    in an action of contract, negligence or other tortious action,
    arising out of or in connection with the use or performance of
    this software.
  */
  
  /** \file
   *
   *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
   */
  
  #define  INCLUDE_FROM_BOOTLOADERCDC_C
  #include "BootloaderCDC.h"
  
  /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
   *  operating systems will not open the port unless the settings can be set successfully.
   */
  static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                             .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                             .ParityType  = CDC_PARITY_None,
                                             .DataBits    = 8                            };
  
  /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
   *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
   *  command.)
   */
  static uint32_t CurrAddress;
  
  /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
   *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
   *  loop until the AVR restarts and the application runs.
   */
  static bool RunBootloader = true;
  
  /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
   *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
   *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
   *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
   */
  uint16_t MagicBootKey ATTR_NO_INIT;
  
  
  /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
   *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
   *  this will force the user application to start via a software jump.
   */
  void Application_Jump_Check(void)
  {
  	bool JumpToApplication = false;
  
  	#if (BOARD == BOARD_LEONARDO)
  		/* Enable pull-up on the IO13 pin so we can use it to select the mode */
  		PORTC |= (1 << 7);
  		Delay_MS(10);
  
  		/* If IO13 is not jumpered to ground, start the user application instead */
  		JumpToApplication = ((PINC & (1 << 7)) != 0);
  
  		/* Disable pull-up after the check has completed */
  		PORTC &= ~(1 << 7);
  	#elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
  		/* Disable JTAG debugging */
  		JTAG_DISABLE();
  
  		/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
  		PORTF |= (1 << 4);
  		Delay_MS(10);
  
  		/* If the TCK pin is not jumpered to ground, start the user application instead */
  		JumpToApplication = ((PINF & (1 << 4)) != 0);
  
  		/* Re-enable JTAG debugging */
  		JTAG_ENABLE();
  	#else
  		/* Check if the device's BOOTRST fuse is set */
  		if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
  		{
  			/* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
  			if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
  			  JumpToApplication = true;
  
  			/* Clear reset source */
  			MCUSR &= ~(1 << EXTRF);
  		}
  		else
  		{
  			/* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
  			 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
  			if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
  				JumpToApplication = true;
  
  			/* Clear reset source */
  			MCUSR &= ~(1 << WDRF);
  		}
  	#endif
  
  	/* Don't run the user application if the reset vector is blank (no app loaded) */
  	bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
  
  	/* If a request has been made to jump to the user application, honor it */
  	if (JumpToApplication && ApplicationValid)
  	{
  		/* Turn off the watchdog */
  		MCUSR &= ~(1 << WDRF);
  		wdt_disable();
  
  		/* Clear the boot key and jump to the user application */
  		MagicBootKey = 0;
  
  		// cppcheck-suppress constStatement
  		((void (*)(void))0x0000)();
  	}
  }
  
  /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
   *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
   *  the loaded application code.
   */
  int main(void)
  {
  	/* Setup hardware required for the bootloader */
  	SetupHardware();
  
  	/* Turn on first LED on the board to indicate that the bootloader has started */
  	LEDs_SetAllLEDs(LEDS_LED1);
  
  	/* Enable global interrupts so that the USB stack can function */
  	GlobalInterruptEnable();
  
  	while (RunBootloader)
  	{
  		CDC_Task();
  		USB_USBTask();
  	}
  
  	/* Wait a short time to end all USB transactions and then disconnect */
  	_delay_us(1000);
  
  	/* Disconnect from the host - USB interface will be reset later along with the AVR */
  	USB_Detach();
  
  	/* Unlock the forced application start mode of the bootloader if it is restarted */
  	MagicBootKey = MAGIC_BOOT_KEY;
  
  	/* Enable the watchdog and force a timeout to reset the AVR */
  	wdt_enable(WDTO_250MS);
  
  	for (;;);
  }
  
  /** Configures all hardware required for the bootloader. */
  static void SetupHardware(void)
  {
  	/* Disable watchdog if enabled by bootloader/fuses */
  	MCUSR &= ~(1 << WDRF);
  	wdt_disable();
  
  	/* Disable clock division */
  	clock_prescale_set(clock_div_1);
  
  	/* Relocate the interrupt vector table to the bootloader section */
  	MCUCR = (1 << IVCE);
  	MCUCR = (1 << IVSEL);
  
  	/* Initialize the USB and other board hardware drivers */
  	USB_Init();
  	LEDs_Init();
  
  	/* Bootloader active LED toggle timer initialization */
  	TIMSK1 = (1 << TOIE1);
  	TCCR1B = ((1 << CS11) | (1 << CS10));
  }
  
  /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
  ISR(TIMER1_OVF_vect, ISR_BLOCK)
  {
  	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
  }
  
  /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
   *  to relay data to and from the attached USB host.
   */
  void EVENT_USB_Device_ConfigurationChanged(void)
  {
  	/* Setup CDC Notification, Rx and Tx Endpoints */
  	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
  	                           CDC_NOTIFICATION_EPSIZE, 1);
  
  	Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
  
  	Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
  }
  
  /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
   *  the device from the USB host before passing along unhandled control requests to the library for processing
   *  internally.
   */
  void EVENT_USB_Device_ControlRequest(void)
  {
  	/* Ignore any requests that aren't directed to the CDC interface */
  	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
  	    (REQTYPE_CLASS | REQREC_INTERFACE))
  	{
  		return;
  	}
  
  	/* Activity - toggle indicator LEDs */
  	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
  
  	/* Process CDC specific control requests */
  	switch (USB_ControlRequest.bRequest)
  	{
  		case CDC_REQ_GetLineEncoding:
  			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
  			{
  				Endpoint_ClearSETUP();
  
  				/* Write the line coding data to the control endpoint */
  				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
  				Endpoint_ClearOUT();
  			}
  
  			break;
  		case CDC_REQ_SetLineEncoding:
  			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
  			{
  				Endpoint_ClearSETUP();
  
  				/* Read the line coding data in from the host into the global struct */
  				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
  				Endpoint_ClearIN();
  			}
  
  			break;
          case CDC_REQ_SetControlLineState:
  	        if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
  	        {
  	            Endpoint_ClearSETUP();
  	            Endpoint_ClearStatusStage();
  	        }
  
  	        break;
  	}
  }
  
  #if !defined(NO_BLOCK_SUPPORT)
  /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
   *  on the AVR109 protocol command issued.
   *
   *  \param[in] Command  Single character AVR109 protocol command indicating what memory operation to perform
   */
  static void ReadWriteMemoryBlock(const uint8_t Command)
  {
  	uint16_t BlockSize;
  	char     MemoryType;
  
  	uint8_t  HighByte = 0;
  	uint8_t  LowByte  = 0;
  
  	BlockSize  = (FetchNextCommandByte() << 8);
  	BlockSize |=  FetchNextCommandByte();
  
  	MemoryType =  FetchNextCommandByte();
  
  	if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
  	{
  		/* Send error byte back to the host */
  		WriteNextResponseByte('?');
  
  		return;
  	}
  
  	/* Check if command is to read a memory block */
  	if (Command == AVR109_COMMAND_BlockRead)
  	{
  		/* Re-enable RWW section */
  		boot_rww_enable();
  
  		while (BlockSize--)
  		{
  			if (MemoryType == MEMORY_TYPE_FLASH)
  			{
  				/* Read the next FLASH byte from the current FLASH page */
  				#if (FLASHEND > 0xFFFF)
  				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
  				#else
  				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
  				#endif
  
  				/* If both bytes in current word have been read, increment the address counter */
  				if (HighByte)
  				  CurrAddress += 2;
  
  				HighByte = !HighByte;
  			}
  			else
  			{
  				/* Read the next EEPROM byte into the endpoint */
  				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
  
  				/* Increment the address counter after use */
  				CurrAddress += 2;
  			}
  		}
  	}
  	else
  	{
  		uint32_t PageStartAddress = CurrAddress;
  
  		if (MemoryType == MEMORY_TYPE_FLASH)
  		{
  			boot_page_erase(PageStartAddress);
  			boot_spm_busy_wait();
  		}
  
  		while (BlockSize--)
  		{
  			if (MemoryType == MEMORY_TYPE_FLASH)
  			{
  				/* If both bytes in current word have been written, increment the address counter */
  				if (HighByte)
  				{
  					/* Write the next FLASH word to the current FLASH page */
  					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
  
  					/* Increment the address counter after use */
  					CurrAddress += 2;
  				}
  				else
  				{
  					LowByte = FetchNextCommandByte();
  				}
  
  				HighByte = !HighByte;
  			}
  			else
  			{
  				/* Write the next EEPROM byte from the endpoint */
  				eeprom_update_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
  
  				/* Increment the address counter after use */
  				CurrAddress += 2;
  			}
  		}
  
  		/* If in FLASH programming mode, commit the page after writing */
  		if (MemoryType == MEMORY_TYPE_FLASH)
  		{
  			/* Commit the flash page to memory */
  			boot_page_write(PageStartAddress);
  
  			/* Wait until write operation has completed */
  			boot_spm_busy_wait();
  		}
  
  		/* Send response byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  }
  #endif
  
  /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
   *  to allow reception of the next data packet from the host.
   *
   *  \return Next received byte from the host in the CDC data OUT endpoint
   */
  static uint8_t FetchNextCommandByte(void)
  {
  	/* Select the OUT endpoint so that the next data byte can be read */
  	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
  
  	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
  	while (!(Endpoint_IsReadWriteAllowed()))
  	{
  		Endpoint_ClearOUT();
  
  		while (!(Endpoint_IsOUTReceived()))
  		{
  			if (USB_DeviceState == DEVICE_STATE_Unattached)
  			  return 0;
  		}
  	}
  
  	/* Fetch the next byte from the OUT endpoint */
  	return Endpoint_Read_8();
  }
  
  /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
   *  bank when full ready for the next byte in the packet to the host.
   *
   *  \param[in] Response  Next response byte to send to the host
   */
  static void WriteNextResponseByte(const uint8_t Response)
  {
  	/* Select the IN endpoint so that the next data byte can be written */
  	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
  
  	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
  	if (!(Endpoint_IsReadWriteAllowed()))
  	{
  		Endpoint_ClearIN();
  
  		while (!(Endpoint_IsINReady()))
  		{
  			if (USB_DeviceState == DEVICE_STATE_Unattached)
  			  return;
  		}
  	}
  
  	/* Write the next byte to the IN endpoint */
  	Endpoint_Write_8(Response);
  }
  
  /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
   *  and send the appropriate response back to the host.
   */
  static void CDC_Task(void)
  {
  	/* Select the OUT endpoint */
  	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
  
  	/* Check if endpoint has a command in it sent from the host */
  	if (!(Endpoint_IsOUTReceived()))
  	  return;
  
  	/* Read in the bootloader command (first byte sent from host) */
  	uint8_t Command = FetchNextCommandByte();
  
  	if (Command == AVR109_COMMAND_ExitBootloader)
  	{
  		RunBootloader = false;
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
  	         (Command == AVR109_COMMAND_SelectDeviceType))
  	{
  		FetchNextCommandByte();
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
  	{
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if (Command == AVR109_COMMAND_ReadPartCode)
  	{
  		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
  		WriteNextResponseByte(0x44);
  		WriteNextResponseByte(0x00);
  	}
  	else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
  	{
  		/* Indicate auto-address increment is supported */
  		WriteNextResponseByte('Y');
  	}
  	else if (Command == AVR109_COMMAND_SetCurrentAddress)
  	{
  		/* Set the current address to that given by the host (translate 16-bit word address to byte address) */
  		CurrAddress   = (FetchNextCommandByte() << 9);
  		CurrAddress  |= (FetchNextCommandByte() << 1);
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
  	{
  		/* Indicate serial programmer back to the host */
  		WriteNextResponseByte('S');
  	}
  	else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
  	{
  		/* Write the 7-byte software identifier to the endpoint */
  		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
  		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
  	}
  	else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
  	{
  		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
  		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
  	}
  	else if (Command == AVR109_COMMAND_ReadSignature)
  	{
  		WriteNextResponseByte(AVR_SIGNATURE_3);
  		WriteNextResponseByte(AVR_SIGNATURE_2);
  		WriteNextResponseByte(AVR_SIGNATURE_1);
  	}
  	else if (Command == AVR109_COMMAND_EraseFLASH)
  	{
  		/* Clear the application section of flash */
  		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
  		{
  			boot_page_erase(CurrFlashAddress);
  			boot_spm_busy_wait();
  			boot_page_write(CurrFlashAddress);
  			boot_spm_busy_wait();
  		}
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
  	else if (Command == AVR109_COMMAND_WriteLockbits)
  	{
  		/* Set the lock bits to those given by the host */
  		boot_lock_bits_set(FetchNextCommandByte());
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	#endif
  	else if (Command == AVR109_COMMAND_ReadLockbits)
  	{
  		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
  	}
  	else if (Command == AVR109_COMMAND_ReadLowFuses)
  	{
  		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
  	}
  	else if (Command == AVR109_COMMAND_ReadHighFuses)
  	{
  		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
  	}
  	else if (Command == AVR109_COMMAND_ReadExtendedFuses)
  	{
  		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
  	}
  	#if !defined(NO_BLOCK_SUPPORT)
  	else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
  	{
  		WriteNextResponseByte('Y');
  
  		/* Send block size to the host */
  		WriteNextResponseByte(SPM_PAGESIZE >> 8);
  		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
  	}
  	else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
  	{
  		/* Delegate the block write/read to a separate function for clarity */
  		ReadWriteMemoryBlock(Command);
  	}
  	#endif
  	#if !defined(NO_FLASH_BYTE_SUPPORT)
  	else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
  	{
  		/* Write the high byte to the current flash page */
  		boot_page_fill(CurrAddress, FetchNextCommandByte());
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
  	{
  		/* Write the low byte to the current flash page */
  		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
  
  		/* Increment the address */
  		CurrAddress += 2;
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if (Command == AVR109_COMMAND_WriteFlashPage)
  	{
  		/* Commit the flash page to memory */
  		boot_page_write(CurrAddress);
  
  		/* Wait until write operation has completed */
  		boot_spm_busy_wait();
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if (Command == AVR109_COMMAND_ReadFLASHWord)
  	{
  		#if (FLASHEND > 0xFFFF)
  		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
  		#else
  		uint16_t ProgramWord = pgm_read_word(CurrAddress);
  		#endif
  
  		WriteNextResponseByte(ProgramWord >> 8);
  		WriteNextResponseByte(ProgramWord & 0xFF);
  	}
  	#endif
  	#if !defined(NO_EEPROM_BYTE_SUPPORT)
  	else if (Command == AVR109_COMMAND_WriteEEPROM)
  	{
  		/* Read the byte from the endpoint and write it to the EEPROM */
  		eeprom_update_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
  
  		/* Increment the address after use */
  		CurrAddress += 2;
  
  		/* Send confirmation byte back to the host */
  		WriteNextResponseByte('\r');
  	}
  	else if (Command == AVR109_COMMAND_ReadEEPROM)
  	{
  		/* Read the EEPROM byte and write it to the endpoint */
  		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
  
  		/* Increment the address after use */
  		CurrAddress += 2;
  	}
  	#endif
  	else if (Command != AVR109_COMMAND_Sync)
  	{
  		/* Unknown (non-sync) command, return fail code */
  		WriteNextResponseByte('?');
  	}
  
  	/* Select the IN endpoint */
  	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
  
  	/* Remember if the endpoint is completely full before clearing it */
  	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
  
  	/* Send the endpoint data to the host */
  	Endpoint_ClearIN();
  
  	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
  	if (IsEndpointFull)
  	{
  		while (!(Endpoint_IsINReady()))
  		{
  			if (USB_DeviceState == DEVICE_STATE_Unattached)
  			  return;
  		}
  
  		Endpoint_ClearIN();
  	}
  
  	/* Wait until the data has been sent to the host */
  	while (!(Endpoint_IsINReady()))
  	{
  		if (USB_DeviceState == DEVICE_STATE_Unattached)
  		  return;
  	}
  
  	/* Select the OUT endpoint */
  	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
  
  	/* Acknowledge the command from the host */
  	Endpoint_ClearOUT();
  }