/* * Copyright (C) 2015 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup examples * @{ * * @file * @brief Demonstrating the sending and receiving of UDP data * * @author Hauke Petersen * * @} */ #include #include #include #include #include "kernel_types.h" #include "msg.h" #include "cpu.h" #include "board.h" #include "xtimer.h" #include "periph/pwm.h" #include "periph/gpio.h" #include "robotcar.h" #define PWM PWM_DEV(0) #define MOTOR1_CHANNEL 0 #define MOTOR1_IN1 GPIO_PIN(PORT_E,0) #define MOTOR1_IN2 GPIO_PIN(PORT_E,2) #define MOTOR1_ECD GPIO_PIN(PORT_A,8) #define MOTOR2_CHANNEL 1 #define MOTOR2_IN1 GPIO_PIN(PORT_E,1) #define MOTOR2_IN2 GPIO_PIN(PORT_E,3) #define MOTOR2_ECD GPIO_PIN(PORT_A,9) #define STDBY GPIO_PIN(PORT_D,4) robot_t motor_1; robot_t motor_2; kernel_pid_t server, client, robot_pid; static void motor1_cb(void *arg) { robot_step_counter(&motor_1); } static void motor2_cb(void *arg) { robot_step_counter(&motor_2); } static void send_cmd(uint32_t c) { msg_t msg; msg.content.value = c; msg_send(&msg, client); } int robot_cmd(int argc, char **argv) { word data; uint32_t speed,steps; if (argc < 2) { printf("usage: %s [move|spin]\n", argv[0]); return 1; } if (strcmp(argv[1], "move") == 0) { if (argc < 5) { printf("usage: %s move [] \n",argv[0]); return 1; } if(strcmp(argv[2], "forward") == 0) { data.cmd = 0; } else if(strcmp(argv[2], "reverse") == 0) { data.cmd = 1; } else { puts("error: invalid command"); return 1; } speed = atoi(argv[3]); steps = atoi(argv[4]); data.speed = speed; data.step = steps; send_cmd(data.msg); } else if (strcmp(argv[1], "spin") == 0) { if (argc < 5) { printf("usage: %s spin [] \n",argv[0]); return 1; } if(strcmp(argv[2], "right") == 0) { data.cmd = 2; } else if(strcmp(argv[2], "left") == 0) { data.cmd = 3; } else { puts("error: invalid command"); return 1; } speed = atoi(argv[3]); steps = atoi(argv[4]); data.speed = speed; data.step = steps; send_cmd(data.msg); } else { puts("error: invalid command"); } return 0; } void send_to_robot(uint32_t msg) { if((msg&0xff) == 0) {robot_move_forward(&motor_1,&motor_2,(msg>>16),cm_to_steps((msg>>8)&0xff));} if((msg&0xff) == 1) {robot_move_reverse(&motor_1,&motor_2,(msg>>16),cm_to_steps((msg>>8)&0xff));} if((msg&0xff) == 2) {robot_spin_right(&motor_1,&motor_2,(msg>>16),cm_to_steps((msg>>8)&0xff));} if((msg&0xff) == 3) {robot_spin_left(&motor_1,&motor_2,(msg>>16),cm_to_steps((msg>>8)&0xff));} } int init_robot(robot_t *dev1, robot_t *dev2) { int res; res = robot_init(&motor_1,PWM,MOTOR1_CHANNEL,MOTOR1_IN1,MOTOR1_IN2,STDBY,MOTOR1_ECD,1); if (res < 0) { puts("Errors while initializing motor"); return 1; } res = robot_init(&motor_2,PWM,MOTOR2_CHANNEL,MOTOR2_IN1,MOTOR2_IN2,STDBY,MOTOR2_ECD,2); if (res < 0) { puts("Errors while initializing motor"); return 1; } puts("all motors initialized."); if (gpio_init_int(MOTOR1_ECD,GPIO_IN, GPIO_RISING, motor1_cb, (void *)MOTOR1_ECD) < 0) { puts("Error while initializing MOTOR1_ECD as external interrupt\n"); return 1; } if (gpio_init_int(MOTOR2_ECD,GPIO_IN, GPIO_RISING, motor2_cb, (void *)MOTOR2_ECD) < 0) { puts("Error while initializing MOTOR2_ECD as external interrupt\n"); return 1; } puts("motor interrupt initialized successfuly\n"); return 0; }