/* * Copyright (C) 2015 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_mpu9150 * @{ * * @file * @brief Device driver implementation for the MPU-9150 9-Axis Motion Sensor * * @author Fabian Nack * * @} */ #include "mpu9150.h" #include "mpu9150-regs.h" #include "periph/i2c.h" #include "xtimer.h" #define ENABLE_DEBUG (0) #include "debug.h" #define REG_RESET (0x00) #define MAX_VALUE (0x7FFF) /* Default config settings */ static const mpu9150_status_t DEFAULT_STATUS = { .accel_pwr = MPU9150_SENSOR_PWR_ON, .gyro_pwr = MPU9150_SENSOR_PWR_ON, .compass_pwr = MPU9150_SENSOR_PWR_ON, .gyro_fsr = MPU9150_GYRO_FSR_250DPS, .accel_fsr = MPU9150_ACCEL_FSR_16G, .sample_rate = 0, .compass_sample_rate = 0, .compass_x_adj = 0, .compass_y_adj = 0, .compass_z_adj = 0, }; /* Internal function prototypes */ static int compass_init(mpu9150_t *dev); static void conf_bypass(const mpu9150_t *dev, uint8_t bypass_enable); static void conf_lpf(const mpu9150_t *dev, uint16_t rate); /*---------------------------------------------------------------------------* * MPU9150 Core API * *---------------------------------------------------------------------------*/ int mpu9150_init(mpu9150_t *dev, i2c_t i2c, mpu9150_hw_addr_t hw_addr, mpu9150_comp_addr_t comp_addr) { uint8_t temp; dev->i2c_dev = i2c; dev->hw_addr = hw_addr; dev->comp_addr = comp_addr; dev->conf = DEFAULT_STATUS; /* Initialize I2C interface */ if (i2c_init_master(dev->i2c_dev, I2C_SPEED_FAST)) { DEBUG("[Error] I2C device not enabled\n"); return -1; } /* Acquire exclusive access */ i2c_acquire(dev->i2c_dev); /* Reset MPU9150 registers and afterwards wake up the chip */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, MPU9150_PWR_RESET); xtimer_usleep(MPU9150_RESET_SLEEP_US); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, MPU9150_PWR_WAKEUP); /* Release the bus, it is acquired again inside each function */ i2c_release(dev->i2c_dev); /* Set default full scale ranges and sample rate */ mpu9150_set_gyro_fsr(dev, MPU9150_GYRO_FSR_2000DPS); mpu9150_set_accel_fsr(dev, MPU9150_ACCEL_FSR_2G); mpu9150_set_sample_rate(dev, MPU9150_DEFAULT_SAMPLE_RATE); /* Disable interrupt generation */ i2c_acquire(dev->i2c_dev); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_INT_ENABLE_REG, REG_RESET); /* Initialize magnetometer */ if (compass_init(dev)) { i2c_release(dev->i2c_dev); return -2; } /* Release the bus, it is acquired again inside each function */ i2c_release(dev->i2c_dev); mpu9150_set_compass_sample_rate(dev, 10); /* Enable all sensors */ i2c_acquire(dev->i2c_dev); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, MPU9150_PWR_PLL); i2c_read_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_2_REG, &temp); temp &= ~(MPU9150_PWR_ACCEL | MPU9150_PWR_GYRO); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_2_REG, temp); i2c_release(dev->i2c_dev); xtimer_usleep(MPU9150_PWR_CHANGE_SLEEP_US); return 0; } int mpu9150_set_accel_power(mpu9150_t *dev, mpu9150_pwr_t pwr_conf) { uint8_t pwr_1_setting, pwr_2_setting; if (dev->conf.accel_pwr == pwr_conf) { return 0; } /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read current power management 2 configuration */ i2c_read_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_2_REG, &pwr_2_setting); /* Prepare power register settings */ if (pwr_conf == MPU9150_SENSOR_PWR_ON) { pwr_1_setting = MPU9150_PWR_WAKEUP; pwr_2_setting &= ~(MPU9150_PWR_ACCEL); } else { pwr_1_setting = BIT_PWR_MGMT1_SLEEP; pwr_2_setting |= MPU9150_PWR_ACCEL; } /* Configure power management 1 register if needed */ if ((dev->conf.gyro_pwr == MPU9150_SENSOR_PWR_OFF) && (dev->conf.compass_pwr == MPU9150_SENSOR_PWR_OFF)) { i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, pwr_1_setting); } /* Enable/disable accelerometer standby in power management 2 register */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_2_REG, pwr_2_setting); /* Release the bus */ i2c_release(dev->i2c_dev); dev->conf.accel_pwr = pwr_conf; xtimer_usleep(MPU9150_PWR_CHANGE_SLEEP_US); return 0; } int mpu9150_set_gyro_power(mpu9150_t *dev, mpu9150_pwr_t pwr_conf) { uint8_t pwr_2_setting; if (dev->conf.gyro_pwr == pwr_conf) { return 0; } /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read current power management 2 configuration */ i2c_read_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_2_REG, &pwr_2_setting); /* Prepare power register settings */ if (pwr_conf == MPU9150_SENSOR_PWR_ON) { /* Set clock to pll */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, MPU9150_PWR_PLL); pwr_2_setting &= ~(MPU9150_PWR_GYRO); } else { /* Configure power management 1 register */ if ((dev->conf.accel_pwr == MPU9150_SENSOR_PWR_OFF) && (dev->conf.compass_pwr == MPU9150_SENSOR_PWR_OFF)) { /* All sensors turned off, put the MPU-9150 to sleep */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, BIT_PWR_MGMT1_SLEEP); } else { /* Reset clock to internal oscillator */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, MPU9150_PWR_WAKEUP); } pwr_2_setting |= MPU9150_PWR_GYRO; } /* Enable/disable gyroscope standby in power management 2 register */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_2_REG, pwr_2_setting); /* Release the bus */ i2c_release(dev->i2c_dev); dev->conf.gyro_pwr = pwr_conf; xtimer_usleep(MPU9150_PWR_CHANGE_SLEEP_US); return 0; } int mpu9150_set_compass_power(mpu9150_t *dev, mpu9150_pwr_t pwr_conf) { uint8_t pwr_1_setting, usr_ctrl_setting, s1_do_setting; if (dev->conf.compass_pwr == pwr_conf) { return 0; } /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read current user control configuration */ i2c_read_reg(dev->i2c_dev, dev->hw_addr, MPU9150_USER_CTRL_REG, &usr_ctrl_setting); /* Prepare power register settings */ if (pwr_conf == MPU9150_SENSOR_PWR_ON) { pwr_1_setting = MPU9150_PWR_WAKEUP; s1_do_setting = MPU9150_COMP_SINGLE_MEASURE; usr_ctrl_setting |= BIT_I2C_MST_EN; } else { pwr_1_setting = BIT_PWR_MGMT1_SLEEP; s1_do_setting = MPU9150_COMP_POWER_DOWN; usr_ctrl_setting &= ~(BIT_I2C_MST_EN); } /* Configure power management 1 register if needed */ if ((dev->conf.gyro_pwr == MPU9150_SENSOR_PWR_OFF) && (dev->conf.accel_pwr == MPU9150_SENSOR_PWR_OFF)) { i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_PWR_MGMT_1_REG, pwr_1_setting); } /* Configure mode writing by slave line 1 */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE1_DATA_OUT_REG, s1_do_setting); /* Enable/disable I2C master mode */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_USER_CTRL_REG, usr_ctrl_setting); /* Release the bus */ i2c_release(dev->i2c_dev); dev->conf.compass_pwr = pwr_conf; xtimer_usleep(MPU9150_PWR_CHANGE_SLEEP_US); return 0; } int mpu9150_read_gyro(const mpu9150_t *dev, mpu9150_results_t *output) { uint8_t data[6]; int16_t temp; float fsr; switch (dev->conf.gyro_fsr) { case MPU9150_GYRO_FSR_250DPS: fsr = 250.0; break; case MPU9150_GYRO_FSR_500DPS: fsr = 500.0; break; case MPU9150_GYRO_FSR_1000DPS: fsr = 1000.0; break; case MPU9150_GYRO_FSR_2000DPS: fsr = 2000.0; break; default: return -2; } /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read raw data */ i2c_read_regs(dev->i2c_dev, dev->hw_addr, MPU9150_GYRO_START_REG, data, 6); /* Release the bus */ i2c_release(dev->i2c_dev); /* Normalize data according to configured full scale range */ temp = (data[0] << 8) | data[1]; output->x_axis = (temp * fsr) / MAX_VALUE; temp = (data[2] << 8) | data[3]; output->y_axis = (temp * fsr) / MAX_VALUE; temp = (data[4] << 8) | data[5]; output->z_axis = (temp * fsr) / MAX_VALUE; return 0; } int mpu9150_read_accel(const mpu9150_t *dev, mpu9150_results_t *output) { uint8_t data[6]; int16_t temp; float fsr; switch (dev->conf.accel_fsr) { case MPU9150_ACCEL_FSR_2G: fsr = 2000.0; break; case MPU9150_ACCEL_FSR_4G: fsr = 4000.0; break; case MPU9150_ACCEL_FSR_8G: fsr = 8000.0; break; case MPU9150_ACCEL_FSR_16G: fsr = 16000.0; break; default: return -2; } /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read raw data */ i2c_read_regs(dev->i2c_dev, dev->hw_addr, MPU9150_ACCEL_START_REG, data, 6); /* Release the bus */ i2c_release(dev->i2c_dev); /* Normalize data according to configured full scale range */ temp = (data[0] << 8) | data[1]; output->x_axis = (temp * fsr) / MAX_VALUE; temp = (data[2] << 8) | data[3]; output->y_axis = (temp * fsr) / MAX_VALUE; temp = (data[4] << 8) | data[5]; output->z_axis = (temp * fsr) / MAX_VALUE; return 0; } int mpu9150_read_compass(const mpu9150_t *dev, mpu9150_results_t *output) { uint8_t data[6]; /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read raw data */ i2c_read_regs(dev->i2c_dev, dev->hw_addr, MPU9150_EXT_SENS_DATA_START_REG, data, 6); /* Release the bus */ i2c_release(dev->i2c_dev); output->x_axis = (data[1] << 8) | data[0]; output->y_axis = (data[3] << 8) | data[2]; output->z_axis = (data[5] << 8) | data[4]; /* Compute sensitivity adjustment */ output->x_axis = (int16_t) (((float)output->x_axis) * ((((dev->conf.compass_x_adj - 128) * 0.5) / 128.0) + 1)); output->y_axis = (int16_t) (((float)output->y_axis) * ((((dev->conf.compass_y_adj - 128) * 0.5) / 128.0) + 1)); output->z_axis = (int16_t) (((float)output->z_axis) * ((((dev->conf.compass_z_adj - 128) * 0.5) / 128.0) + 1)); /* Normalize data according to full-scale range */ output->x_axis = output->x_axis * 0.3; output->y_axis = output->y_axis * 0.3; output->z_axis = output->z_axis * 0.3; return 0; } int mpu9150_read_temperature(const mpu9150_t *dev, int32_t *output) { uint8_t data[2]; int16_t temp; /* Acquire exclusive access */ if (i2c_acquire(dev->i2c_dev)) { return -1; } /* Read raw temperature value */ i2c_read_regs(dev->i2c_dev, dev->hw_addr, MPU9150_TEMP_START_REG, data, 2); /* Release the bus */ i2c_release(dev->i2c_dev); temp = ((uint16_t)data[0] << 8) | data[1]; *output = (((int32_t)temp * 1000LU) / 340) + (35 * 1000LU); return 0; } int mpu9150_set_gyro_fsr(mpu9150_t *dev, mpu9150_gyro_ranges_t fsr) { if (dev->conf.gyro_fsr == fsr) { return 0; } switch (fsr) { case MPU9150_GYRO_FSR_250DPS: case MPU9150_GYRO_FSR_500DPS: case MPU9150_GYRO_FSR_1000DPS: case MPU9150_GYRO_FSR_2000DPS: if (i2c_acquire(dev->i2c_dev)) { return -1; } i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_GYRO_CFG_REG, (fsr << 3)); i2c_release(dev->i2c_dev); dev->conf.gyro_fsr = fsr; break; default: return -2; } return 0; } int mpu9150_set_accel_fsr(mpu9150_t *dev, mpu9150_accel_ranges_t fsr) { if (dev->conf.accel_fsr == fsr) { return 0; } switch (fsr) { case MPU9150_ACCEL_FSR_2G: case MPU9150_ACCEL_FSR_4G: case MPU9150_ACCEL_FSR_8G: case MPU9150_ACCEL_FSR_16G: if (i2c_acquire(dev->i2c_dev)) { return -1; } i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_ACCEL_CFG_REG, (fsr << 3)); i2c_release(dev->i2c_dev); dev->conf.accel_fsr = fsr; break; default: return -2; } return 0; } int mpu9150_set_sample_rate(mpu9150_t *dev, uint16_t rate) { uint8_t divider; if ((rate < MPU9150_MIN_SAMPLE_RATE) || (rate > MPU9150_MAX_SAMPLE_RATE)) { return -2; } else if (dev->conf.sample_rate == rate) { return 0; } /* Compute divider to achieve desired sample rate and write to rate div register */ divider = (1000 / rate - 1); if (i2c_acquire(dev->i2c_dev)) { return -1; } i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_RATE_DIV_REG, divider); /* Store configured sample rate */ dev->conf.sample_rate = 1000 / (((uint16_t) divider) + 1); /* Always set LPF to a maximum of half the configured sampling rate */ conf_lpf(dev, (dev->conf.sample_rate >> 1)); i2c_release(dev->i2c_dev); return 0; } int mpu9150_set_compass_sample_rate(mpu9150_t *dev, uint8_t rate) { uint8_t divider; if ((rate < MPU9150_MIN_COMP_SMPL_RATE) || (rate > MPU9150_MAX_COMP_SMPL_RATE) || (rate > dev->conf.sample_rate)) { return -2; } else if (dev->conf.compass_sample_rate == rate) { return 0; } /* Compute divider to achieve desired sample rate and write to slave ctrl register */ divider = (dev->conf.sample_rate / rate - 1); if (i2c_acquire(dev->i2c_dev)) { return -1; } i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE4_CTRL_REG, divider); i2c_release(dev->i2c_dev); /* Store configured sample rate */ dev->conf.compass_sample_rate = dev->conf.sample_rate / (((uint16_t) divider) + 1); return 0; } /*------------------------------------------------------------------------------------*/ /* Internal functions */ /*------------------------------------------------------------------------------------*/ /** * Initialize compass * Caution: This internal function does not acquire exclusive access to the I2C bus. * Acquisation and release is supposed to be handled by the calling function. */ static int compass_init(mpu9150_t *dev) { uint8_t data[3]; /* Enable Bypass Mode to speak to compass directly */ conf_bypass(dev, 1); /* Check whether compass answers correctly */ i2c_read_reg(dev->i2c_dev, dev->comp_addr, COMPASS_WHOAMI_REG, data); if (data[0] != MPU9150_COMP_WHOAMI_ANSWER) { DEBUG("[Error] Wrong answer from compass\n"); return -1; } /* Configure Power Down mode */ i2c_write_reg(dev->i2c_dev, dev->comp_addr, COMPASS_CNTL_REG, MPU9150_COMP_POWER_DOWN); xtimer_usleep(MPU9150_COMP_MODE_SLEEP_US); /* Configure Fuse ROM access */ i2c_write_reg(dev->i2c_dev, dev->comp_addr, COMPASS_CNTL_REG, MPU9150_COMP_FUSE_ROM); xtimer_usleep(MPU9150_COMP_MODE_SLEEP_US); /* Read sensitivity adjustment values from Fuse ROM */ i2c_read_regs(dev->i2c_dev, dev->comp_addr, COMPASS_ASAX_REG, data, 3); dev->conf.compass_x_adj = data[0]; dev->conf.compass_y_adj = data[1]; dev->conf.compass_z_adj = data[2]; /* Configure Power Down mode again */ i2c_write_reg(dev->i2c_dev, dev->comp_addr, COMPASS_CNTL_REG, MPU9150_COMP_POWER_DOWN); xtimer_usleep(MPU9150_COMP_MODE_SLEEP_US); /* Disable Bypass Mode to configure MPU as master to the compass */ conf_bypass(dev, 0); /* Configure MPU9150 for single master mode */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_I2C_MST_REG, BIT_WAIT_FOR_ES); /* Set up slave line 0 */ /* Slave line 0 reads the compass data */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE0_ADDR_REG, (BIT_SLAVE_RW | dev->comp_addr)); /* Slave line 0 read starts at compass data register */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE0_REG_REG, COMPASS_DATA_START_REG); /* Enable slave line 0 and configure read length to 6 consecutive registers */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE0_CTRL_REG, (BIT_SLAVE_EN | 0x06)); /* Set up slave line 1 */ /* Slave line 1 writes to the compass */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE1_ADDR_REG, dev->comp_addr); /* Slave line 1 write starts at compass control register */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE1_REG_REG, COMPASS_CNTL_REG); /* Enable slave line 1 and configure write length to 1 register */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE1_CTRL_REG, (BIT_SLAVE_EN | 0x01)); /* Configure data which is written by slave line 1 to compass control */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_SLAVE1_DATA_OUT_REG, MPU9150_COMP_SINGLE_MEASURE); /* Slave line 0 and 1 operate at each sample */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_I2C_DELAY_CTRL_REG, (BIT_SLV0_DELAY_EN | BIT_SLV1_DELAY_EN)); /* Set I2C bus to VDD */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_YG_OFFS_TC_REG, BIT_I2C_MST_VDDIO); return 0; } /** * Configure bypass mode * Caution: This internal function does not acquire exclusive access to the I2C bus. * Acquisation and release is supposed to be handled by the calling function. */ static void conf_bypass(const mpu9150_t *dev, uint8_t bypass_enable) { uint8_t data; i2c_read_reg(dev->i2c_dev, dev->hw_addr, MPU9150_USER_CTRL_REG, &data); if (bypass_enable) { data &= ~(BIT_I2C_MST_EN); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_USER_CTRL_REG, data); xtimer_usleep(MPU9150_BYPASS_SLEEP_US); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_INT_PIN_CFG_REG, BIT_I2C_BYPASS_EN); } else { data |= BIT_I2C_MST_EN; i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_USER_CTRL_REG, data); xtimer_usleep(MPU9150_BYPASS_SLEEP_US); i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_INT_PIN_CFG_REG, REG_RESET); } } /** * Configure low pass filter * Caution: This internal function does not acquire exclusive access to the I2C bus. * Acquisation and release is supposed to be handled by the calling function. */ static void conf_lpf(const mpu9150_t *dev, uint16_t half_rate) { mpu9150_lpf_t lpf_setting; /* Get target LPF configuration setting */ if (half_rate >= 188) { lpf_setting = MPU9150_FILTER_188HZ; } else if (half_rate >= 98) { lpf_setting = MPU9150_FILTER_98HZ; } else if (half_rate >= 42) { lpf_setting = MPU9150_FILTER_42HZ; } else if (half_rate >= 20) { lpf_setting = MPU9150_FILTER_20HZ; } else if (half_rate >= 10) { lpf_setting = MPU9150_FILTER_10HZ; } else { lpf_setting = MPU9150_FILTER_5HZ; } /* Write LPF setting to configuration register */ i2c_write_reg(dev->i2c_dev, dev->hw_addr, MPU9150_LPF_REG, lpf_setting); }