Blame view

RIOT/cpu/cc2538/periph/spi.c 4.67 KB
a752c7ab   elopes   add first test an...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  /*
   * Copyright (C) 2015 Loci Controls Inc.
   *               2016 Freie Universitรคt Berlin
   *
   * This file is subject to the terms and conditions of the GNU Lesser
   * General Public License v2.1. See the file LICENSE in the top level
   * directory for more details.
   */
  
  /**
   * @ingroup     cpu_cc2538
   * @ingroup     drivers_periph_spi
   * @{
   *
   * @file
   * @brief       Low-level SPI driver implementation
   *
   * @author      Ian Martin <ian@locicontrols.com>
   * @author      Hauke Petersen <hauke.petersen@fu-berlin.de>
   *
   * @}
   */
  
  #include "cpu.h"
  #include "mutex.h"
  #include "assert.h"
  #include "periph/spi.h"
  
  /**
   * @brief   Array holding one pre-initialized mutex for each SPI device
   */
  static mutex_t locks[SPI_NUMOF];
  
  static inline cc2538_ssi_t *dev(spi_t bus)
  {
      return spi_config[bus].dev;
  }
  
  static inline void poweron(spi_t bus)
  {
      SYS_CTRL_RCGCSSI |= (1 << bus);
      SYS_CTRL_SCGCSSI |= (1 << bus);
      SYS_CTRL_DCGCSSI |= (1 << bus);
  }
  
  static inline void poweroff(spi_t bus)
  {
      SYS_CTRL_RCGCSSI &= ~(1 << bus);
      SYS_CTRL_SCGCSSI &= ~(1 << bus);
      SYS_CTRL_DCGCSSI &= ~(1 << bus);
  }
  
  void spi_init(spi_t bus)
  {
      assert(bus <= SPI_NUMOF);
  
      /* temporarily power on the device */
      poweron(bus);
      /* configure device to be a master and disable SSI operation mode */
      dev(bus)->CR1 = 0;
      /* configure system clock as SSI clock source */
      dev(bus)->CC = SSI_SS_IODIV;
      /* and power off the bus again */
      poweroff(bus);
  
      /* trigger SPI pin configuration */
      spi_init_pins(bus);
  }
  
  void spi_init_pins(spi_t bus)
  {
      switch ((uintptr_t)spi_config[bus].dev) {
          case (uintptr_t)SSI0:
              IOC_PXX_SEL[spi_config[bus].mosi_pin] = SSI0_TXD;
              IOC_PXX_SEL[spi_config[bus].sck_pin ] = SSI0_CLKOUT;
              IOC_PXX_SEL[spi_config[bus].cs_pin  ] = SSI0_FSSOUT;
  
              IOC_SSIRXD_SSI0 = spi_config[bus].miso_pin;
              break;
  
          case (uintptr_t)SSI1:
              IOC_PXX_SEL[spi_config[bus].mosi_pin] = SSI1_TXD;
              IOC_PXX_SEL[spi_config[bus].sck_pin ] = SSI1_CLKOUT;
              IOC_PXX_SEL[spi_config[bus].cs_pin  ] = SSI1_FSSOUT;
  
              IOC_SSIRXD_SSI1 = spi_config[bus].miso_pin;
              break;
      }
  
      IOC_PXX_OVER[spi_config[bus].mosi_pin] = IOC_OVERRIDE_OE;
      IOC_PXX_OVER[spi_config[bus].miso_pin] = IOC_OVERRIDE_DIS;
      IOC_PXX_OVER[spi_config[bus].sck_pin ] = IOC_OVERRIDE_OE;
      IOC_PXX_OVER[spi_config[bus].cs_pin  ] = IOC_OVERRIDE_OE;
  
      gpio_hardware_control(spi_config[bus].mosi_pin);
      gpio_hardware_control(spi_config[bus].miso_pin);
      gpio_hardware_control(spi_config[bus].sck_pin);
      gpio_hardware_control(spi_config[bus].cs_pin);
  }
  
  int spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
  {
      /* lock the bus */
      mutex_lock(&locks[bus]);
      /* power on device */
      poweron(bus);
      /* configure SCR clock field, data-width and mode */
      dev(bus)->CR0 = 0;
      dev(bus)->CPSR = (spi_clk_config[clk].cpsr);
      dev(bus)->CR0 = ((spi_clk_config[clk].scr << 8) | mode | SSI_CR0_DSS(8));
      /* enable SSI device */
      dev(bus)->CR1 = SSI_CR1_SSE;
  
      return SPI_OK;
  }
  
  void spi_release(spi_t bus)
  {
      /* disable and power off device */
      dev(bus)->CR1 = 0;
      poweroff(bus);
      /* and release lock... */
      mutex_unlock(&locks[bus]);
  }
  
  void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
                          const void *out, void *in, size_t len)
  {
      const uint8_t *out_buf = out;
      uint8_t *in_buf = in;
  
      assert(out_buf || in_buf);
  
      if (cs != SPI_CS_UNDEF) {
          gpio_clear((gpio_t)cs);
      }
  
      if (!in_buf) {
          for (size_t i = 0; i < len; i++) {
              while (!(dev(bus)->SR & SSI_SR_TNF)) {}
              dev(bus)->DR = out_buf[i];
          }
          /* flush RX FIFO while busy*/
          while ((dev(bus)->SR & SSI_SR_BSY)) {
              dev(bus)->DR;
          }
      }
      else if (!out_buf) { /*TODO this case is currently untested */
          size_t in_cnt = 0;
          for (size_t i = 0; i < len; i++) {
              while (!(dev(bus)->SR & SSI_SR_TNF)) {}
              dev(bus)->DR = 0;
              if (dev(bus)->SR & SSI_SR_RNE) {
                  in_buf[in_cnt++] = dev(bus)->DR;
              }
          }
          /* get remaining bytes */
          while (dev(bus)->SR & SSI_SR_RNE) {
              in_buf[in_cnt++] = dev(bus)->DR;
          }
      }
      else {
          for (size_t i = 0; i < len; i++) {
              while (!(dev(bus)->SR & SSI_SR_TNF)) {}
              dev(bus)->DR = out_buf[i];
              while (!(dev(bus)->SR & SSI_SR_RNE)){}
              in_buf[i] = dev(bus)->DR;
          }
      /* wait until no more busy */
      while ((dev(bus)->SR & SSI_SR_BSY)) {}
      }
  
      if ((!cont) && (cs != SPI_CS_UNDEF)) {
          gpio_set((gpio_t)cs);
      }
  }